1) aeroassist flight experiment
空气助飞行实验
2) AAFE(aeroassist flight experiment)
[航]空气助力飞行实验
3) flying incapacitation,laboratory,flight-test vehicle
飞行实验室
4) Air experiment
空气实验
5) time of flight experiment
飞行时间实验
6) FCL (Flight Control Laboratory)
飞行控制实验室
补充资料:空气动力学实验
空气动力学实验 aerodynamic experiments 进行空气动力学研究的一种基本手段,通过实验途径研究空气运动规律以及空气与相对运动物体( 主要是飞行器 )之间的相互作用。 分类和原理 空气动力学实 验分实物实验和模型实验两大类 。实物实验如飞机飞行实验和导弹实弹发射实验等,不会发生模型和环境等模拟失真问题,一直是鉴定飞行器气动性能和校准其他实验结果的最终手段,这类实验的费用昂贵,条件也难控制,而且不可能在产品研制的初始阶段进行,故空气动力学实验一般多指模型实验。空气动力学实验按空气(或其他气体)与模型(或实物)产生相对运动的方式不同可分为3类:①空气运动,模型不动,如风洞实验 。②空气静止,物体或模型运动,如飞行实验、模型自由飞实验(有动力或无动力飞行器模型在空气中飞行而进行实验)、火箭橇实验(用火箭推进的在轨道上高速行驶的滑车携带模型进行实验)、旋臂实验(旋臂机携带模型旋转而进行实验)等。③空气和模型都运动,如风洞自由飞实验(相对风洞气流投射模型而进行实验)、尾旋实验(在尾旋风洞上升气流中投入模型,并使其进入尾旋状态而进行实验)等。进行模型实验时,应保证模型流场与真实流场之间的相似,即除保证模型与实物几何相似以外,还应使两个流场有关的相似准数,如雷诺数、马赫数、普朗特数等对应相等(见流体力学相似准数)。实际上,在一般模型实验(如风洞实验)条件下,很难保证这些相似准数全部相等,只能根据具体情况使主要相似准数相等或达到自准范围。例如涉及粘性或阻力的实验应使雷诺数相等;对于可压缩流动的实验,必须保证马赫数相等,等等。应该满足而未能满足相似准数相等而导致的实验误差,有时也可通过数据修正予以消除,如雷诺数修正。洞壁和模型支架对流场的干扰也应修正。空气动力学实验主要测量气流参数,观测流动现象和状态,测定作用在模型上的气动力等。实验结果一般都整理成无量纲的相似准数,以便从模型推广到实物。 风洞和风洞实验 风洞是进行空气动力学实验的一种主要设备,几乎绝大多数的空气动力学实验都在各种类型的风洞中进行。风洞的原理是使用动力装置在一个专门设计的管道内驱动一股可控气流,使其流过安置在实验段的静止模型,模拟实物在静止空气中的运动。测量作用在模型上的空气动力,观测模型表面及周围的流动现象。根据相似理论将实验结果整理成可用于实物的相似准数。实验段是风洞的中心部件,实验段流场应模拟真实流场,其气流品质如均匀度、稳定度(指参数随时间变化的情况)、湍流度等,应达到一定指标。风洞主要按实验段速度范围分类,速度范围不同,其工作原理、型式、结构及典型尺寸也各异。低速风洞:实验段速度范围为0~100 米/秒或马赫数Ma=0~0.3左右 ;亚声速风洞:Ma=0.3~0.8左右;跨声速风洞:Ma=0.8 ~1.4(或1.2)左右;超声速风洞:Ma=1.5~5.0左右;高超声速风洞Ma=5.0~10(或12);高焓高超声速风洞Ma>10(或12)。风洞实验的主要优点是:①实验条件(包括气流状态和模型状态两方面)易于控制。②流动参数可各自独立变化。③模型静止,测量方便而且容易准确。④一般不受大气环境变化的影响 。⑤ 与其他空气动力学实验手段相比,价廉、可靠等。缺点是难以满足全部相似准数相等,存在洞壁和模型支架干扰等,但可通过数据修正方法部分或大部克服。 风洞实验的主要项目有测力实验、测压实验、传热实验、动态模型实验和流态观测实验等。测力和测压实验是测定作用于模型或模型部件(如飞行器模型中的一个机翼等)的气动力及表面压强分布,多用于为飞行器设计提供气动特性数据。传热实验主要用于研究超声速或高超声速飞行器上的气动加热现象。动态模型实验包括颤振、抖振和动稳定性实验等 ,要求模型除满足几何相似外还能模拟实物的结构刚度、质量分布和变形。流态观测实验广泛用于研究流动的基本现象和机理。计算机在风洞实验中的应用极大地提高了实验的自动化、高效率和高精度的水平。
由于实际流动的复杂性,单纯理论或计算结果都必须通过实验验证才能应用于实际问题,有关流动机制的研究更需要依靠实验,因此空气动力学实验有着重要的意义和广泛的发展前景。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条