1) doubly differentiable function
二阶可微函数
2) n-th derived function
n阶可微函数
1.
A new inequality of Ostrowski type for n-th derived functions by upper and lower bounds of n-th derived functions as well as Cruiss inequality.
研究了一类n阶可微函数,利用其n阶导数上、下界以及Cruis不等式,给出了n阶可微函数Ostrowski型不等式,从而推广二阶可微函数Ostrowski型不等式。
3) twice differentiable function
二次可微函数
4) Twice differentiable
二阶可微
5) differentiable function
可微函数
1.
Two mathematical derivations of them have been introduced by using the properties of differentiable function and the derivation algorithm of multiple function in present paper, and several mistakes in some derivative methods have also been pointed out.
介绍了应用可微函数的性质及多元复合函数的求导性质推导热力学中著名的麦克斯韦关系式的方法 ,指出了有关文献中推导过程的不
2.
In this paper, we give a generic condition of differentiable functions on noncompact complete Rie- mannian manifold.
本文给出了比文[4]更好的非紧完备黎曼流形上可微函数的最大值与最小值原理的一般性条件。
3.
This paper investigates the absolute convergence of the Fourier Laplace series concerning of some smooth functions defined on the unit sphere in R n,hereinto shows that:if f is 2([n4]+1) th continuously differentiable function on H r P(Ω n),then the series ∑∞k=0Y kf(x) converges uniformly to f.
讨论了n 维球面上某些可微函数类的Fourier Laplace级数的绝对收敛性 ,其中指出 :设f是Hrp(Ωn)上 2 ( [n4 ]+1)次连续可微函数 ,则级数∑∞k =0 Ykf(n)一致收敛到f 参
6) differentiable functions
可微函数
1.
In this paper,by using the result about the simultaneous polynomial approximation with Hermite interpolatory side conditions,we discuss general conformal simultaneous approximation of differentiable functions and obtain some results.
应用带Hermite约束条件联立逼近的结果 ,讨论了有限区间上可微函数借助于代数多项式的一般保形同时逼近 ,得到相关的几个结
补充资料:二氧化双环戊二烯B阶树脂模塑料
分子式:
CAS号:
性质:又称二氧化双环戊二烯B阶树脂模塑料。以二氧化双环戊二烯B阶树脂为基料配制的能采用模塑方法成型的配混料。产品性能为:弯曲强度110MPa,冲击强度5.4kJ/m2;马丁耐热240℃;体积电阻率1.3×1016Ω·cm,介电强度24.5MV/m。由二氧化双环戊二烯B阶树脂,用石英粉等作填料,再加脱模剂配混制得。可用模塑法制成耐热、耐候制品用于军工和民用方面。
CAS号:
性质:又称二氧化双环戊二烯B阶树脂模塑料。以二氧化双环戊二烯B阶树脂为基料配制的能采用模塑方法成型的配混料。产品性能为:弯曲强度110MPa,冲击强度5.4kJ/m2;马丁耐热240℃;体积电阻率1.3×1016Ω·cm,介电强度24.5MV/m。由二氧化双环戊二烯B阶树脂,用石英粉等作填料,再加脱模剂配混制得。可用模塑法制成耐热、耐候制品用于军工和民用方面。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条