1) simple domain
单纯域
2) Simple
[英]['sɪmpl] [美]['sɪmpḷ]
单纯
1.
It was proved that for v ≥3, there exist two simple DTS ( v,3)s intersecting in s triples if and only if s ∈{6}, for v =3; s ∈{0,1,2,…,12} {1,11} for v =4; s ∈{0,1,2,…, v(v -1)} { v(v- 1)-1}, for all v ≥5.
证明了对于任意正整数v≥3,存在两个v阶单纯三重有向三元系相交于s个公共有向三元组的充要条件是:当v=3时,s∈{6};当v=4时,s∈{0,1,2,…,12}\{1,11};当v≥5时,s∈{0,1,2,…,v(v-1)}\{v(v-1)-1},从而完全确定了单纯三重有向三元系相交数的
2.
The intersection problem of simple directed triple systems with λ =2 is completely solved, namely, it is proved that for v ≡0,1 (mod 3), v ≥3,there exist two simple DTS( v ,2)s intersecting in s triple if and only if, s∈{0,1,2,…,2v(v-1)/3},s≠[2v(v-1)/3]-1, while v≥4 s∈{0,2,4},while v=
解决了单纯二重有向三元系的相交数问题。
3) pure
[英][pjʊə(r)] [美][pjur]
单纯
1.
It is proved in this paper that for arbitrary positive number A, a pure Handcuffed triple system NH(v, 3, λ) can be embedded in a pure Handcuffed triple system NH (u, 3, λ) if and only if A(v- 1 )≡λv(v- 1 ) ≡λ(u - 1 )≡λu(u - 1 )≡0 (mod 4), u≥2v+ 1, λ≤2 (v- 2 ) /3.
本文证明了对任意给定的正整数λ,当且仅当λ(v-1)≡λv(v-1)≡λ(u-1)≡λu(u-1)≡(mod4),u≥2v+1且λ2(v-2)/3时,任一单纯Handcuffed三元系NH(v,3,λ)可嵌入于某个单纯Handcuffed三元系NH(u,3,λ
2.
The following results are obtained:(1)There exists an indecomposable pure MTS( v,3 ) for v =9,10,12,13,15,16.
证明了:(1)对v=9,10,12,13,15,16,存在单纯不可分的MTS(v,3);(2)对一切v≥6,存在单纯不可分的(v,4,2)-PMD。
3.
Let Q={v:there exists a pure (v, 4,1)-PMD whose underlying B(4, 3;v) is indcomposable}.
设Q={v:存在单纯的(v,4,1)-PMD,其基础设计B(4,3;v)是不可分的},则v∈Q的充要条件是v≡0,1(mod4),v>1且v≠4或8。
4) haplo-
单纯,单独
5) holomorphic domain
全纯域
1.
The questions at the front for the several complex variables such as holomorphic function for the several complex variables,holomorphic domain and Levi problem,Cousin problem and Rung theorem,complex manifold and complex vector bundle,sheaf homology group,RiemannRoch theorem and symmetric domain etc,are introduced in this paper.
本文介绍了它的前沿问题:多复变全纯函数;全纯域与levi问题;Cousin问题与Rung定理;复流形与复向量丛;层与同调群以及RiemannRoch定理与对称域等。
6) pure state range
纯态值域
1.
In this paper,the pure state ranges of non-commuting C~*-algebras are discussed and a representation of the essential pure state range of a pair of elements in the tensor products algebra of non-commuting C~*-algebras are obtained.
讨论了非交换C*-代数的谱与纯态值域,得到了C*-代数张量积中两个元的本质纯态值域的表示。
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条