1) header compression method
标头压缩方法
2) header compression
头标压缩
1.
This paper researched the design of the special TCP/IP protocol stack on the wireless sensor nodes, added the protocol header compression technique, and proposed a new model using two different nodes and a design of the protocol stack.
传统的TCP/IP协议栈由于规模庞大而不能用于资源有限的无线传感器网络,在分析无线传感器网络环境的基础上,研究针对无线传感器节点的TCP/IP协议栈的设计,引入协议的头标压缩技术,提出一种采用两种节点、两种栈设计的新型模型。
2.
The implementation of mobile IPv6 header compression in PDA is described.
为了提高移动IPv6在无线网络上的传输效率 ,本文提出了基于鲁棒性头标压缩的移动IPv6头标压缩协议 ,仿真结果表明了该协议的有效性 ,最后给出了头标压缩在PDA上的实现流程 。
3) compression method
压缩方法
1.
Gives a new XML compression method using MPM (Multilevel Pattern Matching ) and BWT algorithm (Burrows -Wheeler Transform), and gives a detailed description of the method.
提出了一种将MPM算法(Multilevel Pattern Matching)和BWT(Burrows-Wheeler Transform)算法相结合来压缩XML文档的压缩方法,给出了算法的详细描述。
4) distance-marking compression method
距离标记压缩方法
5) header compression algorithm
头压缩算法
1.
We also expand the header compression algorithm, consider the issues of utilizing interleaving in RTP and provide the relevant solution.
并针对现有的RTP头压缩算法做了不同的扩展,同时考虑了应用交织技术后带来的问题及相应解决办法。
6) Robust Header Compression
稳健头标压缩
1.
Investigation of the Robust Header Compression in Wireless IP Networks;
无线IP网络中稳健头标压缩的研究
补充资料:冲击压缩曲线的基本测量方法
冲击压缩曲线又称许贡纽曲线。从质量守恒、动量守恒和能量守恒导出的三个冲击波关系式中包括比容v、压强p、比内能E、粒子速度U和冲击波速度D等五个变量,只要测出其中任意两个量,就能对该方程组求解。原则上讲,除比内能外,其他各量都是可以测量的。在高压冲击压缩线测量中,通常选定D、U作为测量参量,这是因为测量速度量的技术比较简便,精度较高。
对于一般固体介质,当冲击压力为数百万巴(具体数值随材料而异)以下时,冲击波速度D与粒子速度U存在线性关系D-U0=с0+λ(U-U0), (1)
相应的冲击压缩线方程为。 (2)
压力再高,D-U线性关系不再成立,而应作如下修正D-U0=с0+λ(U-U0)-λ┡(U-U0)2, (3)
(4)
式中с0、λ及λ┡均为材料常数,с0为零压体积声速。由此可知,只要测得不同压力下材料的(Di,Ui)点集之后,再用数据拟合法求出с0、λ、λ┡,并通过式(2)或式(4)即可得到(p,v)平面内的冲击压缩线。
D值是可以直接测量的,U值则要通过测量飞片速度(见冲击波产生技术)或样品的自由面速度,再通过换算求得。由同种材料制成的飞片和靶相撞时,若飞片温升可以忽略不计,飞片速度严格等于二倍粒子速度。此外,对大多数中等冲击阻抗的样品材料,当冲击压力在100万巴以下时,自由面速度近似等于二倍粒子速度。
速度量的精确测量有以下两种主要方法。
闪光隙法 测量原理见图1。它是利用不同测量位置上气隙内的闪光来显示冲击波、飞片或自由面的到达时间。图1b中的t1代表冲击波通过对应样品的时间,可用于计算冲击波速度D;t2代表冲击波通过对应样品的时间及样品自由面飞越对应空隙的时间之和,可用于计算样品的自由面速度。信号光源取自有机玻璃块和样品(或盖片)之间的空气或氩气受冲击压缩后所产生的辐射光。波形信号由光机式或光电式高速扫描相机进行记录。
电探针法 测量原理见图2。当冲击波、飞片或自由面到达测量位置时,由电探针启动信号形成电路,送出一个电脉冲信号,以显示被测信息到达的时间。通过高速脉冲示波器或数字化记录仪进行记录。从图2b可见,由探针2、3所给出的信号的时间差t1可以算出样品中的冲击波速度,而探针1、2所给信号的时间差t2可以求得样品的自由面速度。
对于一般固体介质,当冲击压力为数百万巴(具体数值随材料而异)以下时,冲击波速度D与粒子速度U存在线性关系D-U0=с0+λ(U-U0), (1)
相应的冲击压缩线方程为。 (2)
压力再高,D-U线性关系不再成立,而应作如下修正D-U0=с0+λ(U-U0)-λ┡(U-U0)2, (3)
(4)
式中с0、λ及λ┡均为材料常数,с0为零压体积声速。由此可知,只要测得不同压力下材料的(Di,Ui)点集之后,再用数据拟合法求出с0、λ、λ┡,并通过式(2)或式(4)即可得到(p,v)平面内的冲击压缩线。
D值是可以直接测量的,U值则要通过测量飞片速度(见冲击波产生技术)或样品的自由面速度,再通过换算求得。由同种材料制成的飞片和靶相撞时,若飞片温升可以忽略不计,飞片速度严格等于二倍粒子速度。此外,对大多数中等冲击阻抗的样品材料,当冲击压力在100万巴以下时,自由面速度近似等于二倍粒子速度。
速度量的精确测量有以下两种主要方法。
闪光隙法 测量原理见图1。它是利用不同测量位置上气隙内的闪光来显示冲击波、飞片或自由面的到达时间。图1b中的t1代表冲击波通过对应样品的时间,可用于计算冲击波速度D;t2代表冲击波通过对应样品的时间及样品自由面飞越对应空隙的时间之和,可用于计算样品的自由面速度。信号光源取自有机玻璃块和样品(或盖片)之间的空气或氩气受冲击压缩后所产生的辐射光。波形信号由光机式或光电式高速扫描相机进行记录。
电探针法 测量原理见图2。当冲击波、飞片或自由面到达测量位置时,由电探针启动信号形成电路,送出一个电脉冲信号,以显示被测信息到达的时间。通过高速脉冲示波器或数字化记录仪进行记录。从图2b可见,由探针2、3所给出的信号的时间差t1可以算出样品中的冲击波速度,而探针1、2所给信号的时间差t2可以求得样品的自由面速度。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条