1) semi-coercive function
半强迫函数
2) forcing functions
强迫函数
3) semimajorant
半强函数
4) srongly semi-continuous function
强半连续函数
5) Strongly semismooth function
强半光滑函数
6) proximity function
迫近函数
补充资料:半连续函数
半连续函数
semi-continuous function
半连续函数l肥l企伽血以朋仙盆七叨;noJlyllenpep曰-阳a:中押刘”,」 定义在完全度量空间X上的扩充实值函数f,称为在点为沂x是下(上)半连续的(lo忱r(印per)s咖一cont~us),如果 粤j(‘))f(动〔瓦f(‘)‘f(“。)]函数.厂称为在X上是下(上)半连续的,如果它在X的每个点都是下(上)半连续的.单调增加(减少)的函数列,其中每个函数都在点x。是下(上)半连续的,那么它们的极限函数在x。仍是下(上)半连续的.若“和v分别为X上的下半连续和上半连续函数,且对所有的xeX,。(x)簇u(x),。(劝>一二,以劝<+田,那么存在X上连续函数f,使得对一切x任x,满足条件。(幻蕊f(x)镬“(x).设拼是R“上的非负正则Bo闭测度,则对任何召可测函数.f:R”一R,存在两个单调函数序列道。。}和{叭小满足如下条件:l)u。和。。分别是下半连续和上半连续的;2)每个u。是有下界的,而每个。。是有上界的;3){u。}是减少的序列而道。,}是增加序列;4)对一切x, “。(x)).f(义))v。(x);5) 。峡u。(‘)一。叭v。(‘)=f(x)拜几乎处处成立;6)若f在EC=R”上为拼可和,且.f‘L:(E,料),则u。,v。‘L,(E,拜)且 厄J二“。一厩J·。“;!一丁.厂‘。 石EE(Vitali.(、份t反油如ry定理(vilali一e汕川话习创了t恤”-化m)).【补注】下半连续与上半连续常缩写为!.s.c.与u.s.c二l,s.c与u.s.c.函数的概念也可以在拓扑空间X上定义.任何一个连续函数族的上(相应地,下)包络是1 .s.c.(u.s.c)的,且当X为完全正则时,其逆亦真;若X可度量化,上述结果对连续函数的可数族也成立.所以,度量空间X上的半连续函数必属于第一助i此类(Ba此ck比es).其逆不真. 设X=R,又设 r一1当二
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条