1) rate distortion optimization motion estimation
失真率最优化运动估计
2) RDO
率失真最优化
3) rate distortion optimization(RDO)
率失真优化
1.
After analyzing intra_frame prediction algorithm,a new intra_4 ×4 mode selection algorithm based on rate distortion optimization(RDO) was proposed.
在详细分析帧内预测模式选择过程的基础上,提出了一种率失真优化(rate distortion optimization,RDO)模式下的快速Intra_4×4模式选择算法。
2.
264/AVC standard employs variable block size Motion Estimation(ME) and Rate Distortion Optimization(RDO) technique in inter-frame mode decision to enhance coding efficiency,but it increases computational complexity drastically.
264/AVC标准采用可变块运动估计和率失真优化技术进行帧间模式选择,提高了编码效率,但极大地增加了计算复杂度。
3.
AVS video standard adopts the Rate Distortion Optimization(RDO) technique to improve the compression performance in the intra prediction.
AVS视频标准采用率失真优化(RDO)算法来提高帧内预测的压缩性能。
4) rate-distortion optimization
率失真优化
1.
Region-of-interest coding based on rate-distortion optimization;
基于率失真优化的ROI编码算法
2.
The multi-prediction macroblock mode search and rate-distortion optimization mode decision that achieve high encoding efficiency are introduced firstly.
在介绍多预测块模式搜索及率失真优化模式选择这2种带来高编码效率的技术的基础上,通过实验研究来分析这2种技术对编码性能的影响。
3.
Moreover,in order to solve the error resilience and the real-time transmission problems,a scheduling algorithm for rate-distortion optimization of H.
264 FMO码流率失真优化调度算法。
5) rate distortion optimization
率失真优化
1.
Rate Distortion Optimization for Wavelet Video Coding;
小波视频编码的率失真优化
2.
In this paper, rate distortion optimization coding and optimal rate control are studied jointly.
率失真优化技术在视频优化编码中起着重要的作用,广泛地应用于宏块模式决策,优化量化等编码模块中。
3.
The impact of macroblock modes on source distortion and channel distortion is discussed,and thus a fast macroblock mode selection algorithm is proposed based on joint source-channel rate distortion optimization.
分析了受损宏块的信道失真及其差错扩散,研究了宏块编码模式对信源失真和信道失真的影响,提出了结合信源信道编码的一种基于率失真优化的快速模式选择算法。
6) RDO
率失真优化
1.
The present algorithm based on local edge information and relativity of the neighborhood block precludes more than 60% probable modes before RDO.
但是由于支持的帧内预测模式较多,使用率失真优化模型计算的编码复杂度很高。
2.
264 standard has higher encoding efficiency than previous video coding standards with the rate- distortion opti-mized (RDO) method for mode decision; but its high encoding efficiency is acquired by heavily increasing computation.
264标准采用率失真优化(RDO)技术提高了编码效率,但这是以较高的计算复杂度为代价的。
3.
Since encoding the I- frame by different QP will generate different rate and distortion for the GOP, we perform RDO for the prediction bits and distortion of the GOP to find the best QP of I frame which could gain the tradeoff between the rate and distortion of this GOP.
鉴于I帧量化参数的选择对于整个GOP编码比特及失真的影响,本文通过对整个GOP的预测码率和失真做率失真优化,来选择可以平衡整个GOP编码量和失真的量化参数。
补充资料:信息率-失真理论
研究在限定失真下为了恢复信源符号所必需的信息率,简称率失真理论。信源发出的符号传到信宿后,一般不能完全保持原样,而会产生失真。要避免这种失真几乎是不可能,而且也无必要,因为信宿不管是人还是机器,灵敏度总是有限的,不可能觉察无穷微小的失真。倘若在处理信源符号时允许一定限度的失真,可减小所必需的信息率,有利于传输和存储。率失真理论就是用以计算不同类型的信源在各种失真限度下所需的最小信息率。因此,这一理论是现代所有信息处理问题的理论基础。
在50年代,信息论主要研究无失真的信息传输问题。信源编码着眼于无失真地恢复信源符号的最小信息率。1959年,C.E.仙农发表《逼真度准则下的离散信源编码定理》一文,提出了率失真函数的概念,逐渐形成率失真理论并不断得到完善。这一理论能解决许多类型的信源问题,并扩大到多用户相关信源问题。
率失真函数 计算率失真函数是率失真理论的中心问题。要定义率失真函数,必须先定量地表达失真的程度,因此需要规定失真函数d(u,v)。u是信源符号U的样,u∈A,A是信源集,可以是连续的实数区间,也可以是离散的有限集如A={ɑ1,ɑ2,...,ɑn}。v 是信宿得到的符号V 的样,v∈B,B可以等于A也可以不同。因此失真函数d 是一个二元函数。当用v代替u不引起失真时,可使d(u,v)=0,若引起失真,就按失真程度规定d(u,v)为正实数集内的一个数。由于U 和V 都是随机量,d(u,v)也将是随机量,因此还须定义平均失真作为失真的度量,即
式中E表示取数学期望。
当信源和信宿是随机序列U1,U2,...,UN和V1,V2,...,VN时,可定义平均失真为
式中ur和vr分别为第r个信源和信宿符号ur、vr的样,各失真函数dr可以是同一函数,也可以是不同的函数。对于连续参量t的随机过程的信源和信宿,可把上面的求和改成积分,即
有了平均失真就可定义率失真函数。若信源和信宿都是离散的,P(u)和Q(v)分别为它们的概率,则
式中P(v│u)是U 和V间的条件概率。则U和V间的互信息为
而率失真函数为
式中PD为所有满足平均失真不大于D的条件概率P(v|u)的集,即
当信源概率P(u)已给定时,I(U;V)是各P(v│u)的函数。在PD中选一组P(v│u)使I(U;V)最小,这最小值将是D的函数,这就是率失真函数R(D),也就是使恢复信源符号时平均失真不大于D所需的最小信息率。这一定义对于连续信源仍然适用,只要将P(u)和P(v│u)理解为概率密度,表达式中的求和号改为积分即可。
当信源概率P(u)已知,失真函数d(u,v)已规定时,可用求极值法来计算R(D)函数。实际计算一般相当复杂,有时尚须借助于计算机作迭代运算。最常见的二元信宿在对称失真函数时,率失真函数(图1)是
式中p为较少出现的信源符号的概率,即,失真函数是
d(0,0)=d(1,1)=0
d(0,1)=d(1,0)=ɑ
H 是熵函数,即
H(z)=-zlogz-(1-z)log(1-z)
(0≤z≤1)
正态信源在均方失真的规定下,率失真函数是
式中σ2为正态信源的方差。失真函数d(u,v)=(u-v)2(图2)。 其实,其他信源的率失真函数也都与上述两种情况有类似的趋势,即对于离散信源,R(0)=H(p),对于连续信源,R(0)→∞;两者都有一个最大失真值Dm,当D≥Dm时,R(D)=0。此外,R(D)必为D的严格递减下凸函数,这些都可由定义直接推出。
限失真信源编码定理 率失真函数只指出限失真条件下所必需的最小信息率。从理论上讲,尚应能证明实际存在一种编码方法,用这样的信息率就能实现限失真的要求。这就是限失真信源编码定理。这个定理可表述为:只要信源符号序列长度N足够大,当每个符号的信息率大于R(D),必存在一种编码方法,其平均失真可无限逼近D;反之,若信息率小于R(D),则任何编码的平均失真必将大于D。
对于无记忆平稳离散信源,上述定理已被严格证明,并知其逼近误差是依指数关系 e 而衰减的。其中B(R)是信息率R的函数,当R>R(D)时,B(R)是正值,且随R的增大而增大。因此当序列长度N增大时,误差将趋于零。对于其他信源,结果还不十分完善。
参考书目
T.Berger, Rate Distortion Theory,Prentice Hall, Engle wood Cliffs,New Jersey,1971.
在50年代,信息论主要研究无失真的信息传输问题。信源编码着眼于无失真地恢复信源符号的最小信息率。1959年,C.E.仙农发表《逼真度准则下的离散信源编码定理》一文,提出了率失真函数的概念,逐渐形成率失真理论并不断得到完善。这一理论能解决许多类型的信源问题,并扩大到多用户相关信源问题。
率失真函数 计算率失真函数是率失真理论的中心问题。要定义率失真函数,必须先定量地表达失真的程度,因此需要规定失真函数d(u,v)。u是信源符号U的样,u∈A,A是信源集,可以是连续的实数区间,也可以是离散的有限集如A={ɑ1,ɑ2,...,ɑn}。v 是信宿得到的符号V 的样,v∈B,B可以等于A也可以不同。因此失真函数d 是一个二元函数。当用v代替u不引起失真时,可使d(u,v)=0,若引起失真,就按失真程度规定d(u,v)为正实数集内的一个数。由于U 和V 都是随机量,d(u,v)也将是随机量,因此还须定义平均失真作为失真的度量,即
式中E表示取数学期望。
当信源和信宿是随机序列U1,U2,...,UN和V1,V2,...,VN时,可定义平均失真为
式中ur和vr分别为第r个信源和信宿符号ur、vr的样,各失真函数dr可以是同一函数,也可以是不同的函数。对于连续参量t的随机过程的信源和信宿,可把上面的求和改成积分,即
有了平均失真就可定义率失真函数。若信源和信宿都是离散的,P(u)和Q(v)分别为它们的概率,则
式中P(v│u)是U 和V间的条件概率。则U和V间的互信息为
而率失真函数为
式中PD为所有满足平均失真不大于D的条件概率P(v|u)的集,即
当信源概率P(u)已给定时,I(U;V)是各P(v│u)的函数。在PD中选一组P(v│u)使I(U;V)最小,这最小值将是D的函数,这就是率失真函数R(D),也就是使恢复信源符号时平均失真不大于D所需的最小信息率。这一定义对于连续信源仍然适用,只要将P(u)和P(v│u)理解为概率密度,表达式中的求和号改为积分即可。
当信源概率P(u)已知,失真函数d(u,v)已规定时,可用求极值法来计算R(D)函数。实际计算一般相当复杂,有时尚须借助于计算机作迭代运算。最常见的二元信宿在对称失真函数时,率失真函数(图1)是
式中p为较少出现的信源符号的概率,即,失真函数是
d(0,0)=d(1,1)=0
d(0,1)=d(1,0)=ɑ
H 是熵函数,即
H(z)=-zlogz-(1-z)log(1-z)
(0≤z≤1)
正态信源在均方失真的规定下,率失真函数是
式中σ2为正态信源的方差。失真函数d(u,v)=(u-v)2(图2)。 其实,其他信源的率失真函数也都与上述两种情况有类似的趋势,即对于离散信源,R(0)=H(p),对于连续信源,R(0)→∞;两者都有一个最大失真值Dm,当D≥Dm时,R(D)=0。此外,R(D)必为D的严格递减下凸函数,这些都可由定义直接推出。
限失真信源编码定理 率失真函数只指出限失真条件下所必需的最小信息率。从理论上讲,尚应能证明实际存在一种编码方法,用这样的信息率就能实现限失真的要求。这就是限失真信源编码定理。这个定理可表述为:只要信源符号序列长度N足够大,当每个符号的信息率大于R(D),必存在一种编码方法,其平均失真可无限逼近D;反之,若信息率小于R(D),则任何编码的平均失真必将大于D。
对于无记忆平稳离散信源,上述定理已被严格证明,并知其逼近误差是依指数关系 e 而衰减的。其中B(R)是信息率R的函数,当R>R(D)时,B(R)是正值,且随R的增大而增大。因此当序列长度N增大时,误差将趋于零。对于其他信源,结果还不十分完善。
参考书目
T.Berger, Rate Distortion Theory,Prentice Hall, Engle wood Cliffs,New Jersey,1971.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条