1) nonisomorphic
不同构
1.
The Lemmas concerning Stei ner triple system construction and nonisomorphic Steiner triple system number ca lculation are proved .
提出了不同构的v阶Steiner三连系个数N的计算方法和v阶Steiner三连系的构造方法。
2) different structure
不同结构
1.
The problem of adaptive synchronization for a class of chaotic systems with different structure and unknown parameters was studied.
针对一类混沌系统,研究了参数未知的不同结构混沌系统的自适应同步问题。
3) non-isomorphic graphs
不同构图
1.
Using the new mapping,graph theory,finite group acting on sets,orbit and equivalent relation,the computing method of reference [1] is improved,and a computation formula is given for non-isomorphic graphs in the tripartite graphs of the same category.
)的计算方法进行了改进,给出了一类三部图的不同构图的计算公式。
4) fixed edge
同构不动边
1.
An edge e of a finite and simple graph G is called a fixed edge of G if implies e =e.
图G的一条边e称为G的同构不动边,如果当且仅当e’=e。
6) isomorphism invariant
同构不变量
补充资料:Frobenius自同构
Frobenius自同构
Frobenius automorphism
E旧映如.自同构〔Fro饭址璐a此加叼和即;中p川免“叮caa盯oMo,中。3MJ C司015群中的一个特殊形式的元素.它在类域论中起关键作用.设L是有限域K的代数扩张,则Fro-比苗璐自同构叭j;定义为甲别认a)二丫,其中a‘L,、二}月(K的元素个数).当L/K为有限扩张时,汽/K生成G司。is群C饱I(L/K).当L/K为无限扩张时,叭/K是G目(L/幻的拓扑生成元.若L〕EOK且IE:KJ<叭则汽厂:二叫众‘,. 设k为具有有限剩余类域工的局部域,K是k的非分歧扩张,则剩余类域扩张的助伙泊i、自同构牧,河以唯一地提升为自同构叭,‘C佃(K/k),,称为非分尽犷攀K/k单Fro恢而比自回汐·设}习一q,吸为K的整数环,p为叹的极大理想,则Fro灰川uS自同构伞叼*由下述条件唯一决定:对任一a‘叹有甄k(a)兰丫(modp).设K/k为局部域的任一Galo地扩张,任一自同构,任G司(K/k)若在K的最大非分歧子扩张上诱导出上述意义下的Froh泊i诏自同构,有时也称为K/k的Frobenius自同构. 设K/k为整体域的Ga】015扩张,p是k的素理想,平是K中在p之上的某一素理想.又设平在K中不分歧,蜘〔Gal(凡/气)是局部域非分歧扩张凡火的Fm-饮泪i璐自同构·如果将6司。is群Gal喝/气)与平在C透1(K/k)中的分解子群等同,则价可看作〔润(K/k)中的元素,这个元素称为对应素理想平的Fro沃浦出自同构.若K八为有限扩张,由取励Tape。密度定理(Che-加扭此v血砒ity小印n沈n)可知,对任一自同构。‘C恤l(K/k),存在无限个在K/k中不分歧的素理想瑕使。二,,.对任一A比l扩张,蜘仅依赖于p,这时价砰己为(p,K/k),称为素理想p的Artin符号(Anins卿比l).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条