1) ill-posed of the inverse problem
反问题的不适定性
2) ill-posed inverse problem
不适定反问题
1.
A new solution is proposed to the ill-posed inverse problem,i.
提出了一种在最小坡度曲线段中选择Tikhonov正则化参数的新方法用于求解这一不适定反问题。
3) Inverse and ill-posed problem
反问题与不适定问题
4) ill-posed problem
不适定性问题
1.
Under this method can solve the robust estimation of ill-posed problems in geodesy.
这种方法可以用于解决大地测量中的不适定性问题。
6) improperly posed problem
不适定性问题
1.
We study the continuous dependence on the initial-time geometry for the improperly posed problem of backward heat equation with different initial data.
研究了具有不同初值的倒向热方程的不适定性问题的解对初始时刻几何的连续依赖性,用一个改进的方法分别导出了仅依赖初始数据的显式的连续依赖性的不等式。
补充资料:不适定问题数值解法
如果某个数学问题的解对定解数据的扰动极敏感,即不是连续地依赖于定解数据,则称该问题是不适定的。
在较长一段时间内,不适定问题被认为没有物理背景,因而没有引起足够的重视。最近几十年来,提出了不少具有实际意义的不适定问题,其数学理论和近似数值解法的研究也得到蓬勃的发展。
典型的不适定问题有:第一类算子(积分)方程、拉普拉斯方程的初值问题、热传导方程逆时向的初值问题、波动方程的狄利克雷问题、求解微分方程系数的反问题等等。
不适定问题可以看为极度病态的问题。在n 维欧氏空间中考察线性方程Au=??,其中A是线性算子。设AA的特征值为1=λ1≥λ2≥...≥λn≥0。若A非奇异,则λn>0,方程有惟一解。但若λn很小,则此方程的条件数(1/λn)1/2很大,方程是病态的。现在在可分的希氏空间H中讨论这个方程。若λn>0,且当n→ 时,λn→0,则上述方程就是第一类算子方程。
设{ei}为AA的特征元素组成的完备基,则成立展开式,其中。此时方程的形式解为:
设,可知A-1仅定义在F上,亦即仅当??∈F时,方程才存在解u=A-1??。
如果已知定解数据??的近似值为??δ,则可能,此时A-1??δ无意义,即方程无解。即使??δ∈F,此时虽存在,但由于A-1无界,也不能通过δ=‖??-??δ‖加以估计。所以,直接求解 Auδ=??δ不能得到有任何确保精度的近似解。这就是求解不适定问题的困难所在。
为了求得具有一定精度的近似解,已经提出了许多有效的解法。20世纪60年代,苏联数学家A.H.吉洪诺夫提出的正则法是较为重要的一种。设R是D(R)→H的对称算子,D(R)在H中处处稠密,且存在常数c>0,对任意的v∈D(R),成立(Rv,v)≥с(v,v)>0(在一般情况下,要求R 非负,且除了H 的一个有限维子空间外上式成立即可)。将满足的极值点uδ作为对应于近似数据??δ的近似解。上述条件极值点uδ也是下列无约束极值问题的解,其中α(δ)是拉格朗日乘子。由变分原理即得由于AA+αR是对称正定算子,((AA+αR)v,v)≥αс(v,v),所以其逆存在,。可以证明,当δ→0时,‖u-uδ‖→0。
正则法的实质在于,对原不适定问题中的算子附加一个适当的小扰动项αR,使之正则化(稳定化),即带有扰动项的问题是适定的。在不适定问题的许多有效解法中,都以某种方式体现了这种正则化思想。
在较长一段时间内,不适定问题被认为没有物理背景,因而没有引起足够的重视。最近几十年来,提出了不少具有实际意义的不适定问题,其数学理论和近似数值解法的研究也得到蓬勃的发展。
典型的不适定问题有:第一类算子(积分)方程、拉普拉斯方程的初值问题、热传导方程逆时向的初值问题、波动方程的狄利克雷问题、求解微分方程系数的反问题等等。
不适定问题可以看为极度病态的问题。在n 维欧氏空间中考察线性方程Au=??,其中A是线性算子。设AA的特征值为1=λ1≥λ2≥...≥λn≥0。若A非奇异,则λn>0,方程有惟一解。但若λn很小,则此方程的条件数(1/λn)1/2很大,方程是病态的。现在在可分的希氏空间H中讨论这个方程。若λn>0,且当n→ 时,λn→0,则上述方程就是第一类算子方程。
设{ei}为AA的特征元素组成的完备基,则成立展开式,其中。此时方程的形式解为:
设,可知A-1仅定义在F上,亦即仅当??∈F时,方程才存在解u=A-1??。
如果已知定解数据??的近似值为??δ,则可能,此时A-1??δ无意义,即方程无解。即使??δ∈F,此时虽存在,但由于A-1无界,也不能通过δ=‖??-??δ‖加以估计。所以,直接求解 Auδ=??δ不能得到有任何确保精度的近似解。这就是求解不适定问题的困难所在。
为了求得具有一定精度的近似解,已经提出了许多有效的解法。20世纪60年代,苏联数学家A.H.吉洪诺夫提出的正则法是较为重要的一种。设R是D(R)→H的对称算子,D(R)在H中处处稠密,且存在常数c>0,对任意的v∈D(R),成立(Rv,v)≥с(v,v)>0(在一般情况下,要求R 非负,且除了H 的一个有限维子空间外上式成立即可)。将满足的极值点uδ作为对应于近似数据??δ的近似解。上述条件极值点uδ也是下列无约束极值问题的解,其中α(δ)是拉格朗日乘子。由变分原理即得由于AA+αR是对称正定算子,((AA+αR)v,v)≥αс(v,v),所以其逆存在,。可以证明,当δ→0时,‖u-uδ‖→0。
正则法的实质在于,对原不适定问题中的算子附加一个适当的小扰动项αR,使之正则化(稳定化),即带有扰动项的问题是适定的。在不适定问题的许多有效解法中,都以某种方式体现了这种正则化思想。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条