1)  haar-like features
haar-like 型特征
1.
In the stage of off-line training,considering the vivid contour,the concave and convex of the ear,we apply the extended haar-like features to construct the space of the weak classifiers using the nearest neighbor norms.
在离线训练阶段,首先结合人耳轮廓清晰,凹凸有致的特点,采用扩充后的 haar-like 型特征,依最近邻法则构造出弱分类器空间,然后根据经验选择 GAB 算法训练出强分类器,最后将多个强分类器级联成多层人耳检测器。
2)  haar-like features
haar-like型特征
1.
In the stage of off-line training,considering the vivid contour,the concave and convex of the ear,we apply the extended haar-like features to construct the space of the weak classifiers using the nearest neig.
在离线训练阶段,首先结合人耳轮廓清晰,凹凸有致的特点,采用扩充后的haar-like型特征,依最近邻法则构造出弱分类器空间,然后根据经验选择GAB算法训练出强分类器,最后将多个强分类器级联成多层人耳检测器。
3)  Haar-Like feature
Haar-Like特征
1.
On the basis of the Haar-Like feature,AdaBoost algorithm was adopted to produce the strong classifier for face detection.
采用AdaBoost算法对人脸图像的Haar-Like特征进行统计学习,生成用于人脸检测的强分类器。
2.
Dr Viola puts forward a fast face detection algorithm based on Haar-like features,which is promising.
美国的Voila博士提出的基于Haar-like特征的人脸检测算法是一种具有巨大发展潜力的新算法,快速而准确。
3.
Haar-like features are used in this application,and Gentle AdaBoost algorithm is chosen to train the strong classifiers wich form the tree structure vehicle classifier.
该方法采用Haar-like特征来表达车辆特征,选择Gentle AdaBoost算法训练出强分类器,最后将多个强分类器组合成树形结构。
4)  Haar-like rectangle feature
Haar-like矩形特征
1.
Based on the space structure properties of iris gray images, three types of Haar-like rectangle features were extracted from which 385 rectangle features with best dividing capacities were selected to construct weak classifiers.
根据虹膜灰度图像的空间结构特征,提取出3类能反映这些结构的Haar-like矩形特征,从中挑选对虹膜图像有最好区分性的385个特征构成弱分类器,再组合生成强分类器。
5)  Haar-like feature extract
Haar-like特征提取
6)  Form feature
造型特征
1.
Based on the analysis of automobiles’ form features in terms of Morphology, this paper mainly focused on Feature Lines and the Belt Line of automobiles.
本文在对汽车造型特征分析的基础上,总结了汽车主要的造型特征线,并提出了腰线的概念,通过对不同品牌车型的比较和对同一品牌不同时期车型的比较分析得出汽车腰线对汽车造型风格和品牌延续性的影响。
参考词条
补充资料:偏微分算子的特征值与特征函数
      由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
  
  
  对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
  
  将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
  式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
  
  与此密切相关的是下面的MP公式:(t→+0)
  取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
  
  特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
  
  用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
  
  上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
  
  对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
  
  在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
  。
  
  当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
  
  除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。