1) Completely positive graph
完全正图
2) completely regular
完全正则
1.
Introducing the concept of Rees matrix semigroups of matrix type,we prove the equivalence of completely simple matrix semigroups and this kind of Rees matrix semigroups, and characterize the minimal ideal of a topological matrix semigroup as well as the completely regular matrix semigroups.
引入矩阵型Rees矩阵半群的概念,证明完全单的矩阵半群等价于矩阵型Rees矩阵半群,进而给出矩阵拓扑半群的极小理想的刻画以及完全正则矩阵半群特别是一些重要类别的群带的刻画。
2.
In the second chapter ,we give the definition of the normal subset of aπ-regular semigroup S , the normal equivalence on E(S) and then we give the description of completely regular congruence pairs of S.
本文主要利用同余的核和迹讨论π-正则半群上的完全正则同余对,并把结果推广到GV-半群和E-反演半群上。
3) copletely positive matrices
完全正定
4) completely positive matrix
完全正
1.
In 1994,Drew, Johnson and Loewy conjectured that the factorization index(CPrank)of every completely positive matrix of order n is not larger than .
一个n×n阶的元素非负矩阵A称为双非负的 ,若A还是半正定矩阵 ,A称为完全正矩阵 ,如果A可以分解成A =BB′,其中矩阵B为某个非负的n×m矩阵 ,m为某个自然数。
5) Completely positive entropy
完全正熵
1.
In this paper, the two-sided topological Markov chain was discussed, and a sufficient condition of that with completely positive entropy is that the matrix determined the two-sided topological Markov chain is aperiodic was proved.
讨论了双边拓扑Markov链,并证明了它具有完全正熵的一个充分条件是决定双边拓扑Markov链的矩阵为非周期的。
6) totally principal positive
完全主正
补充资料:完全正则半群
完全正则半群
completely - regular semi - group
完全正则半群【。扣lple城y一代gular semi一g娜p;.n,班业PeryJ.P一翻no几y印ynna」 同01场班d半群(Clifford sem卜grouP).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条