说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 初值变换法
1)  method of initial-value transform
初值变换法
1.
A method of initial-value transform is presented for strong nonlinear vibratory systems.
提出了一类强非线性动力系统的初值变换法,用Ritz-Galerkin法,将描述动力系统的二阶常微分方程,化为以角频率、振幅为变量的非线性代数方程组,考虑初始条件补充约束方程,构成角频率、振幅为变量的封闭非线性代数方程组。
2)  elementary transform method
初等变换法
1.
By using their ideas, this paper ad vanced an elementary transform method after having improved their two algorithms.
借鉴他们的思想 ,再对两种算法进行改进 ,提出一种“初等变换法
3)  Elementary transformation
初等变换
1.
Improvement on the elementary transformation method of QR decomposition of matrix;
矩阵QR分解初等变换法的改进
2.
Application of elementary transformation of matrix;
矩阵初等变换的一个应用
3.
Finding bases for sum and intersection of subspaces in Pn using elementary transformations;
利用初等变换求P~n中子空间的和与交的基
4)  elementary operation
初等变换
1.
A method of seeking Moore-Penrose s generalized inverse metrix through elementary operation;
求Moore-Penrose广义逆的初等变换法
2.
This paper presents an approach to find out the matrix eigenvalue and eigenvector of an eigenmatrix using elementary operations, which is an easier and quicker way to obtain the similarity diagonalization of a matrix.
文章针对特征矩阵施行初等变换,提出了求出矩阵特征值和特征向量的一种方法,从而以简捷的方式将矩阵相似对角化。
3.
In this paper, a practical solving method and an expression of general solution of a matrix equation AXB=CYD are given by using matrix techniques and elementary operations on matrix.
应用矩阵的初等变换技巧 ,给出了任意域上矩阵方程AXB =CYD的通用表达式及解法。
5)  elementary operations
初等变换
1.
Matrix equations under elementary operations;
初等变换下的矩阵方程AX=B
2.
In the paper , we gives a condition and an expression of general solution of a matrix equation AXB=C by using some matrix techniques and elementary operations on matrices.
文章应用矩阵的初等变换等技巧 ,给出了任意域上矩阵方程AXB =C的有解条件、实用解法及通解。
3.
In the paper,by using some matrix techniques and elementary operations on matrix equations,we give a condition and an expression of general solution of two kinds of matrix equations ABX= CYD, AXB = C.
文章应用矩阵的初等变换、矩阵分解等技巧,给出了任意域上两类矩阵方程AXB=CYDAXB=C的解法及通用表达式。
6)  primary transformation
初等变换
1.
The way of solving matrix equation directly with primary transformation method is discussed with the premise of the matrix of coefficients being reversible, which makes the solving procedures more simple.
讨论了在系数矩阵可逆的前提下 ,如何用初等变换的方法直接求解矩阵方程 ,使求解过程更简化 ,同时给出一般线性方程组的初等变换直观解
2.
A simple method of solving an orthogonal transformation with a primary transformation is presented by change quadric form into canonical form.
给出了利用初等变换求一个正交变换化实二次型为标准形的简便方
3.
Results Getting the effective way of selecting the proper primary matrix from the primary transformation.
方法利用矩阵的初等变换。
补充资料:Radon变换和逆Radon变换


Radon变换和逆Radon变换


X线物理学术语。CT重建图像成像的主要理论依据之一。1917年澳大利亚数学家Radon首先论证了通过物体某一平面的投影重建物体该平面两维空间分布的公式。他的公式要求获得沿该平面所有可能的直线的全部投影(无限集合)。所获得的投影集称为Radon变换。由Radon变换进行重建图像的操作则称为逆Radon变换。Radon变换和逆Radon变换对CT成像的意义在于,它从数学原理上证实了通过物体某一断层层面“沿直线衰减分布的投影”重建该层面单位体积,即体素的线性衰减系数两维空间分布的可能性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条