1) power spectral density matrix
功率谱密度矩阵
1.
Using Schur decomposition method, the power spectral density matrix can be expressed by a series of eigenvalues and eigenvectors.
POD法提供了一种高效、准确的风荷载模拟方法,通过对风场的功率谱密度矩阵进行Schur分解,得到一系列的特征值和特征向量,选取主要的几阶特征模态进行计算就可以得到比较精确的结果。
2) spectrum density matrix
谱密度矩阵
1.
The spectrum density matrix of the proposed model was constructed and its properties are investigated.
提出一种基于Poisson过程的桥梁交通激励模型,建立了该激励模型的谱密度矩阵,并研究了这种激励模型的性质;基于随机振动理论和平稳随机过程理论,分析了这种激励模型作用下桥梁结构的动响应。
3) resolution of power spcetral matrix
功率谱矩阵分解
4) cross-power spectrum matrix
互功率谱矩阵
1.
The cross-power spectrum matrix is constructed according to wind load power spectrum from the experiment and the fitting formula of spatial correlation coefficients.
首先,在同济大学TJ-2边界层风洞中对该超高层建筑进行刚性模型分组同步测压风洞试验,得到各测点层的风力系数时程,并对各层风力系数的频谱特性进行分析,获得各类层风力系数功率谱沿高度变化的特点;接着,对顺风向、横风向和扭转风向的层风力系数的空间相关性进行详细的分析,根据它们的特点提出一种建立超高层建筑层风力空间相关性数学模型的新方法并给出拟合公式;最后,根据试验得到的层风荷载功率谱和拟合的空间相干函数公式便可构造风荷载互功率谱矩阵。
5) power spectrum density
功率谱密度
1.
TAM method of analyzing power spectrum density of heavy-tailed ON/OFF Source;
分析重尾ON/OFF源功率谱密度的TAM近似法
2.
In this system,the characteristics of monitoring signals are extracted by the method of power spectrum density maximum(PSM),and least square support vector machine(LS-SVM) is proposed to detect damages.
基于被动监测技术的局限性,搭建了损伤主动监测系统,对监测信号进行了功率谱密度最大值(PSM)特征提取,并提出了一种基于最小二乘支持向量机(LS-SVM)的损伤检测方法。
3.
The online measuring of the ground surface roughness was estimated by taking into account the power spectrum density of the frictioninduced acoustic emission.
利用摩擦产生的声发射(AE)信号的功率谱密度对磨削表面粗糙度进行在线评价。
6) power spectral density
功率谱密度
1.
Study and validation of the relationship between international roughness index and power spectral density;
国际平整度指数与路面功率谱密度相关关系研究及验证
2.
Specifying surface roughness of optical film substrate using the power spectral density;
利用功率谱密度函数表征光学薄膜基底表面粗糙度
3.
Power spectral density measurement for large aspheric surfaces;
用于大口径非球面的波前功率谱密度检测
补充资料:密度矩阵
又称统计算符,描述统计系综中力学体系的量子运动状态的分布的矩阵。
用求迹符号tr表示取后面矩阵所有对角元之和,则任意力学量 的统计平均值可用该力学量的矩阵与统计系综的密度矩阵表达为
如密度矩阵按几率归一化,则有tr()=1,=tr()。
若q为力学体系所有自由度的坐标的简写,k为该体系量子运动状态的完全描述的简写。引入正交归一化并且完备的基本函数系{ψk(q)},并将系综中每个量子力学体系的薛定谔波函数对基本函数系展开,如
。
此处上标(s)区别系综中各力学体系,总共有N个。展开系数с为时间t的函数,满足与(s)无关的同样的按几率归一化的条件(*表示取复数共轭)。
从展开系数依下式定义的所有矩阵元 ρkι即构成按几率归一化的密度矩阵,
有,而 ρkk为系综中力学体系处在运动状态 k上的几率。任意力学量┮对力学体系(s)的量子平均值为,
其中矩阵元构成该力学量的矩阵。所以该力学量对系综的统计平均值为,
右侧代表矩阵乘积。如不按几率归一化,密度矩阵比上面定义者可差常数因子。
随时间的变化 将薛定谔波函数的展开式代入薛定谔方程
,
可得(s=1,2,...,N,k=所有值),
此处为哈密顿量彑的矩阵元;因为哈密顿量为厄密算符,有。利用展开系数随时间变化的上述方程及其复数共轭,可以推出
或,
此处右侧用了量子力学中泊松括号的定义。这方程与经典力学体系的统计系综的分布函数
所满足的刘维方程相似:,
此处右侧用了经典力学中泊松括号的定义。
单电子密度矩阵 当量子力学体系为n电子体系,如采用哈特里-福克近似而引入单电子波函数时,常如下定义单电子密度矩阵,亦简称为密度矩阵:
此处q为单电子坐标,即三维空间坐标和一个离散的自旋坐标;i为单电子运动状态,包括自旋;式中对i求和为对占据态求和,一共有 n个占据态,每态容纳一个电子。由于ψi(q) 皆正交归一化,注意时对三维空间坐标积分并对自旋坐标求和,上述单电子密度矩阵是归一为总电子数
这样,在q 处出现任一个电子的几率即为(q,q),而在q和q'处出现任一对电子的几率为行列式
上述结果可以由哈特里-福克近似的 n电子体系的行列式波函数
导出。上式左侧k及q为右侧所有i及qj的集合。
参考书目
P.A.M.狄拉克著,陈咸享译:《量子力学原理》,科学出版社,北京,1979。(P.A.M.Dirac,The Principles of Quantum Mechanics,4th ed.,Clarendo Press,Oxford,1958.)
P. A. M.Dirac,Proc.Camb.Phil.Soc.,Vol.25, p.62,1929; Vol.26, p.376, 1930; Vol.27, p.240, 1931.
用求迹符号tr表示取后面矩阵所有对角元之和,则任意力学量 的统计平均值可用该力学量的矩阵与统计系综的密度矩阵表达为
如密度矩阵按几率归一化,则有tr()=1,=tr()。
若q为力学体系所有自由度的坐标的简写,k为该体系量子运动状态的完全描述的简写。引入正交归一化并且完备的基本函数系{ψk(q)},并将系综中每个量子力学体系的薛定谔波函数对基本函数系展开,如
。
此处上标(s)区别系综中各力学体系,总共有N个。展开系数с为时间t的函数,满足与(s)无关的同样的按几率归一化的条件(*表示取复数共轭)。
从展开系数依下式定义的所有矩阵元 ρkι即构成按几率归一化的密度矩阵,
有,而 ρkk为系综中力学体系处在运动状态 k上的几率。任意力学量┮对力学体系(s)的量子平均值为,
其中矩阵元构成该力学量的矩阵。所以该力学量对系综的统计平均值为,
右侧代表矩阵乘积。如不按几率归一化,密度矩阵比上面定义者可差常数因子。
随时间的变化 将薛定谔波函数的展开式代入薛定谔方程
,
可得(s=1,2,...,N,k=所有值),
此处为哈密顿量彑的矩阵元;因为哈密顿量为厄密算符,有。利用展开系数随时间变化的上述方程及其复数共轭,可以推出
或,
此处右侧用了量子力学中泊松括号的定义。这方程与经典力学体系的统计系综的分布函数
所满足的刘维方程相似:,
此处右侧用了经典力学中泊松括号的定义。
单电子密度矩阵 当量子力学体系为n电子体系,如采用哈特里-福克近似而引入单电子波函数时,常如下定义单电子密度矩阵,亦简称为密度矩阵:
此处q为单电子坐标,即三维空间坐标和一个离散的自旋坐标;i为单电子运动状态,包括自旋;式中对i求和为对占据态求和,一共有 n个占据态,每态容纳一个电子。由于ψi(q) 皆正交归一化,注意时对三维空间坐标积分并对自旋坐标求和,上述单电子密度矩阵是归一为总电子数
这样,在q 处出现任一个电子的几率即为(q,q),而在q和q'处出现任一对电子的几率为行列式
上述结果可以由哈特里-福克近似的 n电子体系的行列式波函数
导出。上式左侧k及q为右侧所有i及qj的集合。
参考书目
P.A.M.狄拉克著,陈咸享译:《量子力学原理》,科学出版社,北京,1979。(P.A.M.Dirac,The Principles of Quantum Mechanics,4th ed.,Clarendo Press,Oxford,1958.)
P. A. M.Dirac,Proc.Camb.Phil.Soc.,Vol.25, p.62,1929; Vol.26, p.376, 1930; Vol.27, p.240, 1931.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条