1) nodal-spring element
节点弹簧单元
2) Springed Joint Method
弹簧节理单元
1.
the Springed Joint Method and the Master DOF(Degree of Freedom) Method.
本文工作之一是在强天驰界面过渡单元的基础上,引入虚拟节点和子单元,在子单元中应用节理元思想,提出了基于最小势能原理的弹簧节理单元法。
3) spring joint
弹簧节点
4) spring element
弹簧单元
1.
51 environment, the contacting rigidity between slide block and linear guideway was simulated with spring elements, the finite element model of the machine tool was set up, and the static rigid.
51环境中,用弹簧单元来模拟滑块与直线导轨的接触刚度,建立了机床的有限元模型,并对其静刚度进行了分析。
2.
Spring element was used to simulate main bearing in order to match reality more exactly.
在计算中充分考虑主轴承刚度对曲轴应力的影响,采用弹簧单元模拟轴承支承,更接近实际情况。
3.
Moreover,rotational spring elements and axial spring elements were used in the FEM analysis to simulate the semi-rigidity of joints and the connection stiffness.
采用通用有限元软件ANSYS对试验中的脚手架体系建立三维杆系计算模型,考虑材料的弹塑性及结构的几何非线性,进行非线性极限承载力分析;并引入转角弹簧和轴向弹簧单元分别模拟梁柱节点半刚性以及支撑与节点的连接刚度,通过改变弹簧单元的刚度对整个结构进行参数分析,得到与试验结果较吻合的数值分析模型。
6) Multi-spring Element
多弹簧单元
补充资料:电力网节点编号优化
电力网节点编号优化
network nodes order optimization
d旧nl!wong Jled一anb旧nhoo youhuo电力网节点编号优化(network nodes order。Ptimization)用稀疏矩阵技术求解电力系统网络方程时,为了节省计算机内存和加快计算速度,按照一定规则编排电力网各个节点次序。 在电力系统计算中,网络方程通常采用导纳矩阵方程的形式,它的求解多采用高斯消去法和直接三角分解等(见网络方程求解方法)。导纳矩阵是零元素很多的稀硫矩阵,对它进行消元或三角分解后所得的三角矩阵,要增加一些称为注人元的非零元素。为节约计算机内存及避免对零元素的不必要运算,在计算机中一般只贮存三角矩阵中的非零元素.因此,三角矩阵中非零元素的个数,直接影响计算机内存的需要量及程序计算速度.导纳矩阵非零元素的分布直接影响消元或分解后三角矩阵非零元素的数目.而网络节点编号次序又与导纳矩阵非零元素的分布密切相关(见图1),因此,电力网节点编号优化是求解网络方程前的一项重要工作。┌─────┬────┬─────────┬────┐│节点.号.形│导纳矩阵│消元或分解后三角阵│注入元致│├─────┼────┼─────────┼────┤│么 │麟 │魏 │弓 ││21月 │ │ │ │├─────┼────┼─────────┼────┤│上 │瀚 │魏 │l │├─────┼────┼─────────┼────┤│。~主钩 │麟 │继 │(j │└─────┴────┴─────────┴────┘ 图1节点编号对注入元的影响 ·一非零元素;X一非零注入元紊 节点编号的最优化是寻求一种使注人元素数目最少的节点编号方案.对n个节点的电力网来说,其节点编号方案可以有川种,选最优的工作量将非常大.因此,在实际中往往采取一些简化的方法对节点编号进行优化,并不一定追求“最优”。 根据消元的计算公式或星形一三角形变换规则(见图2),每消去一个节点i,新增加的元素数为八一冬Ji(J‘一,)一及 ‘(1) l、、一一洲声图2消去节点1网络变化示意图式中J‘为在消去节点i时节点i的出线数;及为在消去节点i时与节点i有连线的各节点之间已有的连线数.常用的一些节点编号优化方案,大都根据式(1)或对其作一些简化得到的,主要可分以下三类。 (l)静态按最少出线数编号。对式(1)略去八项,视去为常数,即不考虑消去前面节点对节点i的出线数的影响,因此,也称静态优化法。该方法简单、快速、应用极为普遍。 (2)动态按最少出线数编号。对式(1)略去八项,但考虑Ji的变化,即考虑消去前面节点对节点i的出线数的影响,因此,也称半动态优化法。 (3)动态按增加出线数最少编号.对式(1)考虑及项和J‘的变化,即动态按增加出线数最少的原则编号,也称动态优化法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条