1) strong semilattice of left(right)group
左(右)群的强半格
2) strong semilattices of right groups
右群的强半格
1.
In this paper,the authors chiefly study Cayley graphs of strong semilattices of right groups and obtain some results for structures and properties of these graphs.
研究右群的强半格的Cayley图,刻画了这类图的结构和性质。
3) strong semilattices of left groups
左群的强半格
1.
In this paper,we chiefly study Cayley graphs of strong semilattices of left groups and obtain some results for structures and properties of this graphs.
研究了左群的强半格的Cayley图的结构和性质,给出了一个有向图是左群强半格的Cayley图的充分条件。
4) left(right) strongly π-inverse semigroup
左(右)强π-逆半群
5) semilattice of left groups
左群的半格
6) Semilattice of left (resp. right) simple po-semigroups
左(右)单序半群半格
补充资料:强连续半群
强连续半群
strongly-continuous son!-group
强连续半群[s枷叼y一c佣“nu0lls,”‘.9代阅.;c翻‘即“enpep曰.Ha,no月yrPynna] Banach空间X上具有以下性质的一族有界线性算子T(t),r>0: l)T(t+;)x=T(r)T(:)x,r,了>0,x6X; 2)函数tl~T(t)x对任何x〔X在(O,的)上连续. 当1)成立时,所有函数tl一T(t)x(x‘X)的可测性,且特别地它们的单边(右或左)弱连续性,蕴涵T(t)的强连续性.对一个强连续半群,有限数 田一r叹r一’]n 11T(‘)1卜,纯‘一’In llT(r)11称为该半群的型(勿详of the semi一gouP).这样,函数t卜,T(t)x的范数在的的增长不快于指数e‘『.强连续半群的分类是基于当t,O时它们的性态.如果有一个有界算子J使得当t一,O时}T(t)一川},O,则J是一个投影算子且T(t)=Je‘月,其中A是与J交换的一个有界线性算子.在这情形T(t)关于算子范数是连续的.如果J=I,则T(t)=c‘滩,一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条