1) Mandelbrot's percolation model
Mandelbrot s渗流过程
2) thendelbrot percolation model
Mandelbrot渗流
3) Mandelbrot set
Mandelbrot集
1.
On the basis of the jacquaird waving testing and printing test,Mandelbrot set are investigated for transfering its visual information to be fabric patterns with Visualization in Scientific Computing(ViSC).
根据纺织纹饰图案特点 ,运用非线性科学可视化方法 ,通过织造和印花试验 ,对Mandelbrot集的可视化信息及其在纹织设计中的表达方法进行了初步探讨。
2.
This paper presents the computer algorithm for drawing Mandelbrot set graphics, defines the main variables about the Mandelbrot set and provides the process of realizing the algorithm.
介绍了绘制Mandelbrot集分形图的计算机算法,定义了Mandelbrot集的几个主要变量,并在此基础上给出了计算机算法的实现过程。
3.
This paper is concerned with putting forward a micro algorithm used to research the fine construction of Mandelbrot set under a general complex, and using it to analyze and study the feature of the fractal figure of Mandelbrot set.
提出用于研究一般复映射的Mandelbrot集精细结构的显微算法 ,并利用此算法分析研究Mandelbrot分形图的特
4) Mandelbrot Set
Mandelbrot-集
5) general mandelbrot sets
广义Mandelbrot集
1.
The inner structure of the general Mandelbrot sets generated by the complex map Z←Z α+C(α <0) was studied.
研究了复映射Z←Zα+C(α <0 )所产生的广义Mandelbrot集的内部结构 ,利用逃逸时间算法改变参数α,作出一系列分形图 ,通过具体的实验数据论证了这些分形图中逃逸点的分布规律 ,特别阐述了其中Bk′ 偏卫星系自相似嵌套规律
6) General Mandelbrot set
广义Mandelbrot集
1.
The general Mandelbrot sets from the non-analytical complex mapping ()czz+-a for 2a are studied in this paper.
研究了指数为负实数的非解析复映射()()2+-aaczz的广义Mandelbrot集。
补充资料:正规过程和倒逆过程
讨论完整晶体中声子-声子散射问题时,由于要求声子波矢为简约波矢(见布里渊区),所得到的总波矢守恒条件会相差一个倒易点阵矢量G)。例如对于三声子过程有下列条件
, (1)
式中q1和q2是散射前的声子简约波矢, q3为散射后声子波矢,式(1)中G)的取值应保证q3也是简约波矢。这时会出现两种过程,其一是当q1+q2在简约区内时,可以取倒易点阵矢量G)=0,式(1)则简化为总波矢守恒条件,称为正规过程或N过程。其二是当q1+q2超出简约区时,所取G)应保证q3仍落于简约区内,由于q3与q1+q2相差G),显然q3位于q1+q2的相反一侧,这时散射使声子传播方向发生了倒转,故称为倒逆过程或U过程。U过程总波矢不守恒,但总能量守恒,因为声子频率是倒易点阵的周期函数,而q3与q1+q2只相差一个倒易点阵矢量。N过程在低温长波声子的散射问题中起主要作用。当温度升高,简约区边界附近的声子有较多激发时,U过程变得十分显著,它对点阵热导有重要贡献。
在能带电子与声子散射问题中存在着与式 (1)相仿的总波矢条件
k+G=k┡±q,
(2)
式中k与k┡分别为散射前后电子的简约波矢,±号分别对应于吸收或发射q声子。类似的在热中子-声子散射以及晶体中一切波的相互作用过程中,总波矢变化都相差一个倒易点阵矢量G),因此也都有N与U过程之分。这是晶体和连续媒质不同之处,连续媒质对无穷小平移具有不变性,才能求得总波矢守恒,而晶体只具有对布喇菲点阵的平移不变性,因此总波矢守恒条件会相差一个倒易点阵矢量。
, (1)
式中q1和q2是散射前的声子简约波矢, q3为散射后声子波矢,式(1)中G)的取值应保证q3也是简约波矢。这时会出现两种过程,其一是当q1+q2在简约区内时,可以取倒易点阵矢量G)=0,式(1)则简化为总波矢守恒条件,称为正规过程或N过程。其二是当q1+q2超出简约区时,所取G)应保证q3仍落于简约区内,由于q3与q1+q2相差G),显然q3位于q1+q2的相反一侧,这时散射使声子传播方向发生了倒转,故称为倒逆过程或U过程。U过程总波矢不守恒,但总能量守恒,因为声子频率是倒易点阵的周期函数,而q3与q1+q2只相差一个倒易点阵矢量。N过程在低温长波声子的散射问题中起主要作用。当温度升高,简约区边界附近的声子有较多激发时,U过程变得十分显著,它对点阵热导有重要贡献。
在能带电子与声子散射问题中存在着与式 (1)相仿的总波矢条件
k+G=k┡±q,
(2)
式中k与k┡分别为散射前后电子的简约波矢,±号分别对应于吸收或发射q声子。类似的在热中子-声子散射以及晶体中一切波的相互作用过程中,总波矢变化都相差一个倒易点阵矢量G),因此也都有N与U过程之分。这是晶体和连续媒质不同之处,连续媒质对无穷小平移具有不变性,才能求得总波矢守恒,而晶体只具有对布喇菲点阵的平移不变性,因此总波矢守恒条件会相差一个倒易点阵矢量。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条