1) rational Gaussian surface
有理高斯曲面
1.
In this paper, a 3D reconstruction and visualization of medical Images based on rational gaussian surface method is introduced that enables the user to effectively complete surface approximation and edit the surface shape by changed the position of control points.
本文研究一种基于有理高斯曲面医学图像三维重建及可视化的方法,它能够帮助用户有效的完成曲面重建并且能够通过修改控制点编辑曲面形状。
2) Gauss curved face
高斯曲面
1.
The coefficient of Gauss curved face function was obtained using the combination of linearity interpolation method and least squares method.
这种方法把星光成像看成是高斯点扩散函数模型,利用线性内插和最小二乘法拟合得到高斯曲面参数,从高斯曲面模型中得到亚像素级的恒星位置。
3) rational surfaces
有理曲面
1.
Rational curves and rational surfaces, which are a class of important parametric curves and surfaces, are extensive applied in CAD/CAM.
第三章主要介绍了有理曲面的区间隐式化,我们基于优化方法找到了一条较低次的区间代数曲面使得给出的有理Bézier曲面落在该区间代数曲面内,并使得一包含区间代数曲面的宽度和张量项的目标函数达到最小。
2.
Rational curves and rational surfaces, which are a class of important approximation functions, are extensive applied in CAD/CAM.
第四章主要介绍了有理曲面的区间多项式的逼近,首先简单介绍了基于泰勒展开来做的区间曲面逼近,后面是本文的主要工作,我们基于优化方法得到了更好的区间曲。
4) rational surface
有理曲面
1.
In this paper,we put forward a new method called interval implicitization of rational surfaces,that is,finding an interval algebraic surface with lower degree to bound a given rational surface and minimize some objective function involving the width and the tension of the interval algebraic surface.
利用一个低阶多项式区间隐式曲面来包围所给的参数式有理曲面,并构造了一些关于区间隐式曲面厚度和微分张量的目标函数。
2.
he G ̄1 rational surface interpolation through topologically rectangular curve net-works is discussed.
就矩形拓扑曲线网格上的G ̄1有理曲面插值问题作了研究,提出了一种在空间矩形拓扑曲线网格上构造有理插值曲面的方法。
5) curved surface with negatine gauss curvature
负高斯曲面
6) curved surface with negative gauss curvature
负高斯曲率曲面
补充资料:单侧曲面与双侧曲面
单侧曲面与双侧曲面
one - sided and two - sided surfaces
单侧曲面与双侧曲面(帐.幼山月.砚加。一浦山吐,叮肠。污;o月.oc”POHHNe.刀”yc功PollH“e no.epxltocT.) 以不同的方式放置于外围空间中的两类曲面(单侧放置(one一sid留泌ition)和双侧放置(t场U.si山刘p沈i石on)).例如,柱面是双侧曲面,而M施如带(M冬biuss州P)是单侧曲面.这两类曲面之间的特征区别是,柱面的边界由两条曲线组成,而M6bi留带的边界是单独的一条曲线.在封闭曲面中,球面(sPhere)和环面(torus)是双侧的,而X】曲1曲面(Kleins班鱼沈)是单侧的.作为双侧放置和单侧放置的例子,可以引用圆周在M6blus带中的嵌人.这样,圆周“(见图)是单侧曲线,而圆周刀是双侧曲线(一般说来,任何无定向道路(d留丽enii飞path)单侧地落在曲面中). 霍重)薰黔 更确切地说,单侧曲面和双侧曲面是以不同的方式嵌人在(维数高过1的)外围空间中的两类流形.双侧性和单侧性与可定向性和不可定向性(见定向(。山nta石on))有关,但是它们不是曲面的内在性质,而依赖于外围空间.例如,存在可定向的双侧曲面:梦C=夕,护C=R,;不可定向的双侧曲面:’R尸ZxOCR PZ xs,;可定向的单侧曲面:尹二S,xs,c= RPZx夕;不可定向的单侧曲面:R尸,CR尸(这里,梦是球面,产是环面,R尸“是射影平面,RP3是射影空间,夕是R尸上迷失方向的路径). 在可定向空间(例如,R”)中一个超曲面是可定向的,当且仅当它是双侧的. 假定一个法向量沿着浸人在某个空间中的光滑曲面上一条闭曲线移动,并保持它是曲面的法向量.如果不管如何选择闭曲线,当回到出发点时法向量的指向与它原来的指向总是一致的,则称该曲面是双侧的(t认。一sid记);反之,则称它为单侧的(o优一51山沮).更一般地,曲面n是双侧放置的当且仅当它的法丛(nonl以1 bundk)是平凡的(在这个丛里存在一个非零截面).反之,单侧曲面的法丛是非平凡的:在n上存在一条曲线使得法丛在它上面的限制是一条M6bius常. 空间N”中每一个(超)曲面M”一’在局部上都把尸分成两部分,即任意一点x任M月一’C=N“有一个邻域U cN,使得U由两个分支U’和U“组成,而U门M“一’属于它们的公共边界.在另一方面,M”一’在N”中的充分小邻域(如果M在N中是封闭的)或者是一个分支,或者有两个分支,其边界包含M在内.在第一种情形,(超)曲面M”一’也称为单侧的(one-51山沮),在第二种情形,称为双侧的(腼、51山过).因而,虽然曲面在局部上是双侧的,但是在大范围上它可能是单侧的.反过来,双侧曲面未必分隔它在空间中的邻域. 对于落在N“+’中的双侧曲面M”,任意一条封闭曲线:与M”在N”十’中的相交指数(同调论中的)(运如加叨。n in(七x(in holnofogy))满足方程(:,M”)二Olllod 2.但是,如果M”是单侧的,则对某条曲线:日丫+’(:,M·)笋0.这个事实(与法向量的移动及邻域的分隔一起)也能取作单侧性和双侧性的定义.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条