3) space sequence
空间序列
1.
Thinking about introducing space sequence concept;
关于引入空间序列概念的思考
2.
It is mainly the light and space sequence that create the four-dimensional space.
光和空间序列是创造四维空间的主要元素。
3.
Gate plays an important role because it is start-point of space sequence of the acrhitectural group,it has funcitons in protection,traffic and culture.
大门是建筑群体空间序列的起点 ,位置重要 ,它具有防卫、交通、文化等功能。
4) spatial sequence
空间序列
1.
The application of contrast in spatial sequence design;
对比在空间序列设计中的运用
2.
The essay makes initial discussions of different kinds of rhythms in architectural spatial sequence to approach to the practical significance of rhythms.
文章对建筑空间序列中常见的节奏状况进行初步分类,探讨节奏的表现意义。
3.
The spatial characteristics of Yunnan Dali Shuanglang town street were introduced from street distributing situation,street spatial sequence, spatial scale,ecological landscape,paving art and street life.
从街巷的分布情况、街巷的空间序列、空间尺度、生态景观、铺装艺术、街巷生活等方面介绍了云南大理双廊镇的街道空间特色,指出在进行旅游开发的同时,应注意保留和发扬街道的空间特色,从根本上保护双廊特色景观。
5) sequential space
序列空间
1.
This paper proves that a weakly-sequential space X with a σ-weakly hereditarily closure-preserving sn-network has a σ-compact finite sn-network.
文中证明了一个具有σ-弱遗传闭包保持sn-网的弱序列空间具有-σ紧有限sn-网。
2.
We showthat a mapping froma sequential space is continuous iff it is sequentially continuous,whichi m-proves a result by relaxing first-countability of domains to sequentiality.
证明了序列空间上的映射是连续映射当且仅当它是序列连续映射,这一结果减弱了通常要求的定义域空间的第一可数性。
3.
By this result,we will know that a sequential space with a point-countable cs~*-network is a D-space.
由此结论,我们得到一序列空间若有点可数cs~*-网络,则X是D-空间。
6) space series
空间序列
1.
If the data sequence of all seismic prospecting signal traces at the same moment is regarded as a complicated function of the strata in some region and their geological parameters, it is a space series of seismic prospecting signal.
当把地震勘探信号各道间对应于同一时刻的数据序列看作是反映一定范围内地层及其地质参数的复杂函数时,便构成了地震勘探信号的空间序列。
补充资料:列紧空间
列紧空间
compact space, countably
列紧空间〔~paCtsPa说,阴.加bly;~nlx沁T-少.盯.] 具有列紧性(comPactness,countable)的拓扑空间.可度量化的(列)紧空间称为紧统(comPaCt山卫).术语“可数紧空间”有时意味着满足附加分离性质的列紧空间;而不具有附加性质的空间称为拟可数紧的(qUasi countably comPact).能表示成可数紧空间的可数并的空间称为叮可数紧的份一countably~-Pact).M.H.B璐加exo‘翻‘撰【补注】本条目中所说“附加分离性质”指的是Hausdorff性质(Hausdorff property).方嘉琳译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条