1) π-regular γ-semigroup
π-正则γ-半群
2) π-regular semigroup
π-正则半群
1.
In this paper,the author studies the π-regular semigroups which lattices of subsemigroups are 0-distributive lattices or 0-modular lattices,in particular,characterises the π-regular semigroups which lattices of subsemigroups are 0-modular are complemented.
本文分别研究了子半群格是0-分配格和0-模格的π-正则半群,特别地,还刻划了子半群格是0-模的有补格的π-正则半群。
2.
The authors establish the definition of the weak natural partial order and majorization on π-regular semigroups and discuss their related properties.
定义并讨论了π-正则半群上弱自然偏序关系和优化、劣化的概念,以及它们的相关性质。
3.
Aim To study the strong splittability of the semigroup class of archimedean semigroup,π-regular semigroup and so on.
目的研究阿基米德半群,π-正则半群等半群类的强可分性。
3) regular Γsemigroup
正则Γ-半群
1.
おn this paper, we define the sandwich set and the orthodox congruence pair for regular Γsemigroups.
定义了正则Γ-半群上的Sandwich集合及纯正同余对,然后刻划了正则Γ-半群上的纯正同余。
4) strictly π-regular semigroups
严格π-正则半群
1.
The minimum group congruence on strictly π-regular semigroups;
严格π-正则半群上的最小群同余
5) Strict π Regular Semigroup
严格π正则半群
6) completely π-regular semigroup
完全π-正则半群
1.
Some propertes of completely π-regular semigroups;
完全π-正则半群的若干性质
补充资料:完全正则半群
完全正则半群
completely - regular semi - group
完全正则半群【。扣lple城y一代gular semi一g娜p;.n,班业PeryJ.P一翻no几y印ynna」 同01场班d半群(Clifford sem卜grouP).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条