1) Classical measurement Model
古典风险度量模型
2) classical risk model
古典风险模型
1.
Resort to the relationship between compound Poisson distribution and compound negative bino- mial distribution,and using some results available under the classical risk model,the ruin probability with initial surplus u(u≥0)are derived.
利用复合负二项分布与复合 Poisson 分布的关系,并利用古典风险模型下已有的一些结果,简单明确的得到了初始资本为 u(u≥0)时的破产概率。
2.
In the reality complex economic environment, the classical risk model can not describe the revolution of the insurance company perfectly.
在现实复杂的经济环境中,古典风险模型并不能很好的描述保险公司的运转,所以一直以来大家都致力于古典风险模型的推广,以使其更能刻画现实中保险公司的业务运行。
3.
The paper discusses the formula of the union distribution of the maximum and the minimum of the surpluses before ruin,the first and last recovery from negative to zero for the classical risk model expressed by nonruin probability function.
文章讨论了用不破产概率函数有限表达的古典风险模型在破产前,从负余额首次返回到零点前及最后一次返回零点前3种时期内余额的极大值和极小值的联合分布公式。
3) classical risk process with constant interest force
常利率古典风险模型
1.
The barrier strategy for the classical risk process with constant interest force is considered.
考虑带常利率古典风险模型下的边界分红问题,给出了期望折现分红函数满足的积分-微分方程,并利用killing过程的观点给出了进一步的解释。
4) Disturbed classical risk model
带干扰古典风险模型
5) risk measurement model
风险度量模型
1.
The researches on modern credit risk measurement model mainly fall into three categories: credit risk measurement model based on option pricing theory,credit risk measurement model based on statistic method,and credit risk measurement model based on mathematics courses.
现代信用风险度量模型的研究主要可分为3类:基于期权理论的信用风险度量模型、基于统计方法的信用风险度量模型以及基于计算机技术的信用风险度量模型。
6) VaR models
VaR风险度量模型
1.
This paper applies VaR models to evaluate performances, which conforms to the modern theories and can describe the real returns of the securities investment funds completely and validly.
将VaR风险度量模型应用于证券投资基金绩效评估中 ,这种经风险调整后的绩效评估方法符合现代理论的要求 ,能更全面、有效的描述基金的真实收益。
补充资料:可公度量和不可公度量
可公度量和不可公度量
ommensulble and incommensuable magnitudes (quantities)
可公度t和不可公度t【~e璐u由lea目in~men-su.ble magultodes(quanti柱es);“洲口Mel娜M毗“”“”-113Mep目M曰e肠eJ皿,一皿曰』 如果两个同类量(例如两个长度或两个面积)具有或不具有公度(common measure,即另一个同类量,所考虑的两个量都是这个量的整数倍),则相应地称这两个量为可公度量或不可公度量.正方形的边长和对角线,或圆的面积和丫的半径的平方,都是不可公度量的例尹.如果两个量是可公度的,则‘l艺们的比是有理数;相反,不可公度量忿比是无理数、
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条