2) mathematic intuitive thinking
数学直觉思维
1.
Recognition of mathematic intuitive thinking concept and nature;
对数学直觉思维概念和本质的认识
3) mathematical thinking ability
数学思维能力
1.
This essay summarizes the definition of mathematical thinking habits and mathematical thinking ability.
阐述了数学思维习惯和数学思维能力的概念,根据数学教育的特点,应用现代教育思想和观念,提出了全面培养学生思维能力和思维习惯,提高学生整体素质的新途径。
2.
The two logical thinking methods of contrast and analogy have influence on mathematics teaching on analysing the two methods applied in the course of teaching ,the two methods are benefical to training students′ mathematical thinking ability and they also have reference values to improve the quality of maths teaching .
本文论述了对比和类比这两种常用的罗辑思维方法对数学教学过程的影响和作用 ,分析了对比和类比在教学过程中的具体应用局面 ,对于在教学中培养学生数学思维能力 ,提高数学教学质量具有一定的参考价
3.
Mathematical thinking process should be carried out in accordance with these characteristics to cultivate the mathematical thinking ability of .
数学思维过程是主体以获取数学知识或解决数学问题为目的、运用有关思维方式或方法达到数学内容内在的信息加工活动;数学思维具有问题性、抽象性、概括性、逻辑性和相似性等特征;在课堂教学中根据数学思维的特征,展示数学思维过程,培养学生的数学思维能力。
4) intuition thinking
直觉思维
1.
On theories of physical chemistry and development of student′s intuition thinking;
物理化学理论与学生直觉思维培养
2.
The Intuition Thinking in the Mathematical Problem Solving;
数学问题解决中的直觉思维
3.
Since 1960 s, a lot of animal and human experiments have proved that the two Hemispheres have respective functions, function of the left Hemisphere dealing with verbal information, and performing abstract thinking and logic thinking, whereas the right Hemisphere dealing with concrete information, and performing non-logic thinking and intuition thinking.
如果教育能致力于平衡语言和直觉思维 ,努力开发右脑的功能 ,我们就可能培养更多的在科学活动中具有创新思维的优秀人才 。
5) intuitive thought
直觉思维
1.
On how to train intuitive thought ability in math s teaching;
论数学教学中直觉思维能力的培养
2.
“Energy” of Intuitive Thought——A reflection upon intuitive thought and its methodology from the discoveries of Einstein and Femi;
直觉思维的“能量”——从爱因斯坦、费米的发现反思直觉思维及其方法论意义
3.
Moreover,intuitive thought is helpful in arousing inspiration as it helps us see clearly the essence and regularity of things.
在设计构思环节中 ,发散性思维能使设计思路流畅、灵活 ;收敛性思维能使构思有准确的定位 ;直觉思维能加速认识事物的本质和规律性 ,产生设计灵感 ;通过想象能使设计摆脱现状 ,实现超越 ,得到最新意境的浮现和展
6) intuitive thinking
直觉思维
1.
A Probe into the cultivating of intuitive thinking in Mathematics studies;
初探数学学习过程中直觉思维的培养
2.
This paper is aimed to make a brief study on the rule of thinking in translation from the three layers of thinking, that is, the abstract thinking, the thinking in images, and intuitive thinking, and meanwhile to discuss the ways in which the translator realize his creativity via the thinking in the translation.
本文试从翻译思维的三个层面,即抽象思维、形象思维和直觉思维分别简略探讨思维活动在英汉互译过程中的运动规律,以及译者通过翻译思维实现翻译创造的不同途径。
3.
In this paper,the author presents intuitive thinking from creative thinking structure,analyzes its concept and features,discusses its function and importance in training talents and finally,based on the feature of information education,explores the methods for developing intuitive thinking in information education.
本文首先从创造性思维结构中提出直觉思维,分析直觉思维的概念、特点,讨论了直觉思维在人才培养中的作用和重要性。
补充资料:直觉思维
直觉思维
intuitive thinking
直觉思维(intuitive thinking)一般指根据有限的信息、资料,迅速地作出结论或判断的思维过程。它的主要特点是认识过程的直接性、简约性及其结论的或然性。在直觉思维过程中,无严格的逻辑顺序,无明显的推理步骤,而是一种跳跃式的认识活动,常常抓住一点线索就快速地解决问题,在直觉思维时人常常说不清楚某个观念是怎样产生或问题是怎样解决的。它不受常规思维方式的约束,容易产生新的、异乎寻常的观念或构思,在创造发明中具有重要的意义。但又由于其根据不足,结论常带有猜测的性质,不完全可靠。它的完善化及效能,有赖于人的知识经验和逻辑思维的发展。在许多情况下,逻辑推理思维经过多次练习而变得非常熟练,这个过程就会压缩、简化,省去许多中间环节,转化为直觉思维。它的可靠性,最终要经过逻辑论证和实践活动加以检验。在皮亚杰的认知发展理论中,直觉思维指以知觉到的形象为依据的思维,属于儿童智力发展中从前运算阶段到具体运算阶段间的一个过渡环节。 (古茂盛撰王启康移璐龄市)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条