说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 基于行的离散小波变换
1)  Line-based discrete wavelet transform
基于行的离散小波变换
2)  line-based wavelet transform
基于行的小波变换
1.
In view of the problems of the large memory requirement and the high computation complexity, JPEG2000, the line-based wavelet transform is proposed, which implemented by the lifting scheme.
针对JPEG2000内存需求大、计算复杂度高等问题,提出了用提升格式实现的基于行的小波变换方法,以累进方式完成列向的小波变换,可在不影响变换结果的前提下降低对存储容量的需求;同时利用提升格式的特点, 进一步节省内存和加快计算速度。
2.
As we know,the line-based wavelet transform reduces the requirement for memory,and post Scaling Lifting Algorithm(PSLift) needs fewer multiplications.
基于行的小波变换能降低对存储容量的要求,后拉伸变换的提升算法能减少离散小波变换的乘法运算量。
3)  RBDWT Region C Based Discrete Wavelet Transform
基于地区的离散子波变换
4)  SWBCT
基于平稳小波的Contourlet变换
1.
Based on the stationary wavelet based contourlet transform(SWBCT)and projection,a novel remote sensing target recognition method was put forward in this study.
方向信息提取与小样本问题是遥感目标识别与应用的瓶颈,基于平稳小波的Contourlet变换(Stationary Wavelet Based Contourlet Transform,简称SWBCT)与投影特征相结合,本文提出了一种新的遥感目标特征提取与识别方法。
5)  object-based wavelet transform
基于内容的小波变换
6)  lifting-based DWT
基于lifting算法的小波变换
补充资料:N点有限长序列的离散傅里叶变换
      时域N点序列χ(n)的离散傅里叶变换(DFT)以X(k)表示,定义为
  
  (1)
  式中K=0,1,...,N-1。式(1)称为DFT的正变换。从式(1)可以导出
  
   (2)
  式中n=0,1,...,N-1。式(2)称为DFT的逆变换。式(1)和式(2)合起来称为离散傅里叶变换对。
  
  由于在科学技术工作中人们所得到的离散时间信号大多是有限长的N点序列,所以对N点序列进行时域和频域之间的变换是常用的变换,另外 DFT有它的快速算法,使变换可以在很短的时间内完成,所以DFT是数字信号处理中最为重要的工具之一。
  
  DFT的原理  是以给定的时域N点序列χ(n)作为主值周期进行周期延拓(即使之周期化)得到以 N点为周期的离散周期序列χ((n))N,再求χ((n))N的离散傅里叶级数(DFS)表示(见离散时间周期序列的离散傅里叶级数表示),得频域的N点离散周期序列X((k))N,最后从X((k))N中取出其主值周期,即得X(k)。同理,与此相似,如果已知X(k)求χ(n),则是从X(k)得X((k))N,再从X((k))N得χ((n))N,取出主值周期即得χ(n)。这个概念很重要,DFT的性质大都与此有关。至于从χ(n)求X(k),或已知X(k)求χ(n)则是用(1)式或(2)式直接进行的,并不需要通过χ((n))N和X((k))N
  
  DFT的主要性质  共有5点,如下表中所列。表中a、b为常数, χ((m))N为以N点为周期的周期序列,χ((n+m))N为χ((n))N序列整体左移m点后的结果其他符号如X((k+l))N,X((l))N,Y((k-l))N及y((n-m))N等可类推其含义,不一一列出。
  
  
  DFT的快速算法  又称为快速傅里叶变换(FFT)。当序列的长度N为2的整数次幂(即N=2,&λ为整数)时,算法的指导思想是将一个N 点序列的DFT分成两个N/2点序列的DFT,再分成四个N/4点序列的DFT,如此下去,直到变成N/2个两点序列的DFT。这种快速算法的计算工作量与DFT的直接计算的计算工作量之比约为log2N/(2N),以N=1024为例FFT的计算工作量仅约为DFT直接计算的1/200。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条