1) quantitative attribute discretization
数量属性离散化
3) attribute discretization
属性离散化
1.
A new method is proposed when attribute discretization.
在属性离散化时,提出用常用的隶属度函数来拟合FCM聚类后的结果,并用此函数和参数来实现属性数据的离散化,避免了每次输入数据都必须通过聚类操作来进行离散化;采用了粗糙集理论建立推理规则,选择和交通事件密切相关属性并进行规则的约简,加速了模糊推理的速度;最后采用Max-Min模糊推理方法对交通事件进行检测。
4) Discretization
[英][dis,kri:ti'zeiʃən] [美][dɪ,skritɪ'zeʃən]
属性离散化
1.
This article discards the discretization concept using cut sets, a global discretization algorithm is proposed in this paper based on rough set and hierarchical method.
本算法在层次聚类的基础上考虑不同连续属性离散化结果间的互补性和相关性,在不改变原信息系统不可分辨关系的前提下通过增类减类进行全局离散化。
6) discretization of continuous attributes
连续属性离散化
1.
An algorithm of discretization of continuous attributes in rough sets based on cluster;
文中针对这一缺陷 ,利用连续数值属性有序性的性质和统计方差理论 ,提出了一种基于聚类的连续属性离散化算法。
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条