1) BDD Decomposition
BDD因式分解
2) Factorization
[,fæktərai'zeiʃən]
因式分解
1.
Base on algebra neural networks model of contain parameter multivariate polynomials approximate factorization;
基于代数神经网络的含参多元多项式近似因式分解模型
2.
Identities of Adjoint Polynomials of Graphs Cluster of G_(1,rp_n) and Its Factorizations;
图簇G_(1,rp_n)的伴随多项式的恒等式及其因式分解
3.
The factorization of adjon polynomials of graphs of Γ_(r(2k+p)+1)~(ψ*G(i,j))-shape and chromatic non-uniqueness analysis;
Γ_(r(2k+p)+1)~(ψ*G(i,j))型图簇的伴随多项式的因式分解及色性
4) factoring
[英]['fæktə] [美]['fæktɚ]
因式分解
1.
In this paper a suffitient and necessary condition of factoring o n the polynomial of three variables power two is obtained by using undefinite co efficient method.
利用待定系数法得出了三元二次多项式可进行因式分解的充要条件, 并应用这个充要条件解决了两个具体问题。
5) spectral factorization
谱因式分解
6) Cholesky factorization
Cholesky因式分解
补充资料:因式
果多项式 f(x) 能够被非零多项式 g(x) 整除,即可以找出一个多项式 g(x) ,使得 f(x)=q(x)·g(x),那么g(x) 就叫做 f(x) 的一个因式。当然,这时 q(x) 也是 f(x) 的一个因式,并且 q(x) 、g(x) 的次数都不会大于 f(x) 的次数。
注意:g(x)≠0,但 q(x) 可以等于0(当 f(x)=0 时)。
例如,因为 (x+1)(x-1)=x2-1, 把左边、右边交换,得到 x2-1= (x+1)(x-1) ,所以 x+1,x-1 都是 x2-1 的因式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条