说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> LU因式分解
1)  LU factorization
LU因式分解
2)  LU-SGS approximate factorization deducing
LU近似因式分解推导
3)  implicit LU scheme
隐式LU分解
1.
High performance parallel computing of implicit LU scheme for 3D Euler equations;
三维Euler方程组隐式LU分解的高性能并行计算
4)  LU-decomposition
LU分解形式
1.
On the matrix one sufficient and one necessary condition is derived; and meanwhile the LU-decomposition for the matrix is gained.
研究了对角占优矩阵的性质,给出了此类矩阵奇异的一个充分条件和一个充分必要条件,同时给出了它的LU分解形式。
5)  explicit LU factorization
显式LU分解
1.
In this paper,the author gives an explicit LU factorization and 1-banded factorization of the generalized Vandermonde matrix by using symmetric functions.
主要讨论如何利用对称函数构造证明文献[1]给出的广义范德蒙矩阵显式LU分解定理。
6)  LU decomposition
LU分解
1.
LU decomposition based one-step conjugate gradient algorithm for image reconstruction;
基于LU分解的共轭梯度法单步成像算法
2.
The reduced quasi-block tridiagonal matrix simultaneous correction method based on LU decomposition is developed successfully to solve quasi-block tridiagonal matrix caused by connecting stream and recycle stream of the column system.
成功地采用基于LU分解的压缩型拟块三对角矩阵方程同时校正算法,解决了由于塔之间存在联接物流或回流而形成的非三对角线矩阵方程的求解问题。
3.
Binary image watermarks that are scrambled by Logistic chaotic encryption are embedded into the U matrix by LU decomposition in DCT domain.
在宿主图像DCT域构造严格对角占优阵并进行LU分解,之后在U阵中进行二值图像水印嵌入。
补充资料:因式分解
Image:11738428736726657.jpg
因式分解

因式分解(factorization)

因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.

⑴提公因式法

①公因式:各项都含有的公共的因式叫做这个多项式各项的~.

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵运用公式法

①平方差公式:. a^2-b^2=(a+b)(a-b)

②完全平方公式: a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).

立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).

④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]

a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)

⑶分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

※ 多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止.

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条