1) distributed machine learning
分布式机器学习
2) distributed learning
分布式学习
1.
Construction of a distributed learning environment;
谈分布式学习环境的建设
2.
Brief Discussion on the Distributed Learning Based on Network;
浅谈基于网络的分布式学习
3) distributed reinforcement learning
分布式强化学习
1.
Survey of distributed reinforcement learning algorithms in multi-agent systems;
多智能体系统中的分布式强化学习研究现状
2.
Research on the Architectures of Distributed Reinforcement Learning Systems;
分布式强化学习系统的体系结构研究
3.
Research on Distributed Reinforcement Learning Theory and Its Applications in Multi-robot Systems;
分布式强化学习理论及在多机器人中的应用研究
4) distributed learning rate
分布式学习速率
5) distributed meta-learning
分布式元学习
6) distributed learning algorithm
分布式学习算法
1.
To solve the bottleneck of memory and running time problem in protein structure predicting with large-scale data set, a neural networks distributed learning algorithm is studied.
针对目前神经网络在处理类似生物信息数据库这类较大规模数据时,遇到的大规模数据处理耗时过长、内存资源不足等问题·在分析当前神经网络分布式学习的基础上,提出了一种新的基于Agent和切片思想的分布式神经网络协同训练算法·通过对训练样本和训练过程的有效切分,整个样本集的学习被分配到一个分布式神经网络集群环境中进行协同训练,同时通过竞争筛选机制,使得学习性能较好的训练个体能有效地在神经网络群中迁移,以获得较多的资源进行学习·理论分析论证了该方法不仅能有效提高神经网络向目标解收敛的成功率,同时也具有较高的并行计算性能,以加快向目标解逼近的速度·最后,该方法被应用到了蛋白质二级结构预测这一生物信息学领域的问题上·结果显示,该分布式学习算法不仅能有效地处理大规模样本集的学习,同时也改进了训练得到的神经网络性能
补充资料:机器学习
机器学习
machine learning
·328·习L一~~.~..~~~~侧~~~~机现学习等等。这一时期有影响的工作有学习质谱仪预测规则系统Meta~DENDRAL,利用AQll方法学习大豆疾病诊断规则系统,利用ID3方法学习象棋残局规则,数学概念发现系统AM,符号积分系统LEX,以及一系列物理定理重新发现系统BACON。在学习计算理论上,L.G.Valiant提出了概率近似正确PAC学习模型,这一成果推动了学习计算理论的发展。 第四阶段始于80年代中后期,主要源于神经网络的重新兴起。由于使用隐单元的多层神经网络及反传算法的提出,克服了早期线性感知机的局限性,从而使得非符号的神经网络的研究得以与符号学习并行发展。同时,机器学习在符号学习的各个方面也更加深人和广泛地展开,并形成了较为稳定的几种学习风范,如归纳学习,分析学习(特别是解释学习和类比学习),遗传学习等。这一时期有影响的工作有多层神经网络反向传播学习算法,基于解释的学习,一系列决策树归纳学习方法,J.H.Hollalld的遗传学习和分类器系统,A.Newell等的岌〕AR学习系统,以及PRODIGY学习系统等。近期,由于复杂世界的实际应用的需要,出现了结合各种学习方法的集成学习系统、多策略学习技术,特别是关于连接学习与符号学习的结合。另外,有着很大应用价值的数据库知识发现学习技术也发展得很快。 机器学习经过三十多年的发展,到现在已形成 了很多学习方法,例如机械学习、传授学习、实例学 习、发现学习、解释学习、类比学习、事例学习、遗传学习、连接学习等。这些学习方法可以用一个学习模型来描述(参见图1)。环境)一叫学习单元卜叫知识库卜叫执行单元图1一个简单学习系统模型 在图1中,圆圈表示信息体(如观察的数据,以及事实、规则等知识),方框表示过程。箭头指示数据在学习系统中的流向。环境为学习单元提供外界信息源(如经验实例)。学习单元利用该信息对知识库作出改进(增加新知识或重新组织已有知识)。执行单元利用知识库中的知识执行任务,任务执行后的信息又反馈给学习单元作为进一步学习的输人。 学习单元的输人有两种:一是外界环境,另一是执行任务后的反馈信息。不同的学习系统有不同的经验实例表示。最简单的一种是二元特征表示,仅仅描述对象某些属性的存在与否,例如病人有或没有某个特定症状。下文要讲的连接学习和遗传学习方法一般使用这种二元特征的输人。另一种是用属性值表示,每个属性有一组相互排斥的值,如颜色属性的值可为红色、蓝色和黄色等。二元特征可看作是此类的特例。这种属性值表示典型地用在归纳学习方法中。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条