1) region orientation Fourier transform
区域方向傅立叶变换
2) Fourier transform of azimuth
方位向傅立叶变换
3) Fourier transform spectral domain
傅立叶变换谱域
1.
Formulation of this problem is greatly facilitated by using matrix analysis for the transverse field vectors in the Fourier transform spectral domain.
利用傅立叶变换谱域中的横向场矢量的矩阵分析,该问题得到了较为方筻的解决。
4) Fourier Transform
傅立叶变换
1.
Determination of total acid and total ester in liquor based on Fourier transform near-infrared spectroscopy;
傅立叶变换近红外光谱法检测白酒总酸和总酯
2.
A method of digital image watermarking based on wavelet and Fourier transform;
基于小波和傅立叶变换组合的数字图像水印算法
5) Fourier transforms
傅立叶变换
1.
Discrete Fourier transforms and fast Fourier transforms were analyzed and compared in this thesis.
本文对离散傅立叶变换和快速傅立叶变换进行了分析与比较,讨论了两种不同变换算法的优缺点和适用范围。
2.
A new method proposed which uses synthesis algorithm on the basis of wavelet transforms and Fourier transforms to measure electricity parameter.
提出一种基于小波变换和傅立叶变换综合测量电参量的新方法。
3.
In the integral formula of Fourier transforms of option pricing formula,by using residues theorem two integrations were simplified into a single numerical integration which has a faster rate of decay.
在期权定价公式的傅立叶变换积分公式中,运用留数定理将公式中的两个积分式子化简成一个被积函数衰减较快的积分函数式,从理论上提高了计算效率,缩短了计算时间,为投资者快速计算期权价值节约了时间。
6) Fourier transformation
傅立叶变换
1.
Practical industrial frequency harmonics analysis based on Fourier transformation;
一种基于傅立叶变换的实用工频谐波分析方法
2.
Fourier transformation and its application in Fraunhofor diffraction by circular aperture;
傅立叶变换及其在夫朗和费圆孔衍射中的应用
3.
The Green's tensor in frequency domain for cylindrical layered media was deduced from the 3-D Green dyadic for homogeneous media according to the propagation laws of waves in layered media,then the Green's tensor in spatial domain can be achieved with Fourier transformation,which is a singular integral of wave-number.
根据分层介质中波的传播规律,由均匀介质中的三维张量格林函数得到频率域中柱状分层介质的张量格林函数表达式,经过傅立叶变换,可以得到空间域的格林函数,它是一个关于波数的奇异积分。
补充资料:快速傅立叶变换
快速傅氏变换 英文名是fast fourier transform
快速傅氏变换(fft)是离散傅氏变换(dft)的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。
设x(n)为n项的复数序列,由dft变换,任一x(m)的计算都需要n次复数乘法和n-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出n项复数序列的x(m),即n点dft变换大约就需要n2次运算。当n=1024点甚至更多的时候,需要n2=1048576次运算,在fft中,利用wn的周期性和对称性,把一个n项序列(设n=2k,k为正整数),分为两个n/2项的子序列,每个n/2点dft变换需要(n/2)2次运算,再用n次运算把两个n/2点的dft变换组合成一个n点的dft变换。这样变换以后,总的运算次数就变成n+2(n/2)2=n+n2/2。继续上面的例子,n=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的dft运算单元,那么n点的dft变换就只需要nlog2n次的运算,n在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是fft的优越性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条