说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 离散傅立叶变换
1)  DFT
离散傅立叶变换
1.
A Simple Interpolation Technique for the DFT for Joint System Parameters Estimation in Burst MPSK Transmissions;
突发多相移相键控通信中应用离散傅立叶变换内插技术联合估计载波参数
2.
Dielectric Loss Measurement Method Based on Quasi-synchronous DFT;
基于准同步离散傅立叶变换的介损测量方法
3.
A Method of DFT Fast Hardware Realization with CPLD;
离散傅立叶变换的CPLD快速实现
2)  Discrete fourier transform
离散傅立叶变换
1.
A Neural Structure Based on Multidimensional Discrete Fourier Transform For Modeling of Approximation Generalization;
基于多维离散傅立叶变换的神经网络用于数据逼近和泛化建模
2.
Multiplierless discrete Fourier transform based on moments
基于矩的无乘法离散傅立叶变换
3.
In order to improve the efficient of digital audio watermarking embedding,by exploiting the new formulas of simultaneously calculating the discrete Fourier transform and inverse discrete Fourier transform of a N-real sequence,an improved digital audio watermarking embedding scheme was proposed.
为了提高数字音频水印中的水印嵌入效率,利用同时计算N点实序列的离散傅立叶变换(DFT)和逆离散傅立叶变换(IDFT)的新公式提出了一种改进的数字音频水印嵌入方案。
3)  Discrete fourier transform(DFT)
离散傅立叶变换
1.
This paper analyzes the calculation magnitudes of Discrete Fourier Transform(DFT)and its fast implementation method—Fast Fourier Transform(FFT), and makes a thorough comparison between their characteristics in actual application.
分析了离散傅立叶变换 (DFT)和它的快速算法 (FFT)的计算 ,对DFT和FFT在应用时的特点作了深入的比较 ,提出在某些实际应用场合DFT比它的快速算法FFT更有优
4)  discrete Fourier transformation
离散傅立叶变换
5)  discrete Fourier transforms
离散傅立叶变换
1.
Discrete Fourier Transforms (DFT) is the .
离散傅立叶变换(DFT)方法是计算相量的基本算法,当电网频率偏移时,由于栅栏和频谱泄露现象,相量的计算将出现误差。
6)  Discrete Fourier Transform (DFT)
离散傅立叶变换(DFT)
补充资料:N点有限长序列的离散傅里叶变换
      时域N点序列χ(n)的离散傅里叶变换(DFT)以X(k)表示,定义为
  
  (1)
  式中K=0,1,...,N-1。式(1)称为DFT的正变换。从式(1)可以导出
  
   (2)
  式中n=0,1,...,N-1。式(2)称为DFT的逆变换。式(1)和式(2)合起来称为离散傅里叶变换对。
  
  由于在科学技术工作中人们所得到的离散时间信号大多是有限长的N点序列,所以对N点序列进行时域和频域之间的变换是常用的变换,另外 DFT有它的快速算法,使变换可以在很短的时间内完成,所以DFT是数字信号处理中最为重要的工具之一。
  
  DFT的原理  是以给定的时域N点序列χ(n)作为主值周期进行周期延拓(即使之周期化)得到以 N点为周期的离散周期序列χ((n))N,再求χ((n))N的离散傅里叶级数(DFS)表示(见离散时间周期序列的离散傅里叶级数表示),得频域的N点离散周期序列X((k))N,最后从X((k))N中取出其主值周期,即得X(k)。同理,与此相似,如果已知X(k)求χ(n),则是从X(k)得X((k))N,再从X((k))N得χ((n))N,取出主值周期即得χ(n)。这个概念很重要,DFT的性质大都与此有关。至于从χ(n)求X(k),或已知X(k)求χ(n)则是用(1)式或(2)式直接进行的,并不需要通过χ((n))N和X((k))N
  
  DFT的主要性质  共有5点,如下表中所列。表中a、b为常数, χ((m))N为以N点为周期的周期序列,χ((n+m))N为χ((n))N序列整体左移m点后的结果其他符号如X((k+l))N,X((l))N,Y((k-l))N及y((n-m))N等可类推其含义,不一一列出。
  
  
  DFT的快速算法  又称为快速傅里叶变换(FFT)。当序列的长度N为2的整数次幂(即N=2,&λ为整数)时,算法的指导思想是将一个N 点序列的DFT分成两个N/2点序列的DFT,再分成四个N/4点序列的DFT,如此下去,直到变成N/2个两点序列的DFT。这种快速算法的计算工作量与DFT的直接计算的计算工作量之比约为log2N/(2N),以N=1024为例FFT的计算工作量仅约为DFT直接计算的1/200。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条