1) partial differential equation method
微分方程方法
1.
Structured grid generation includes algebraic and partial differential equation method.
结构化网格生成方法包括代数方法和微分方程方法。
2) differential equation method
微分方程法
1.
The core algorithms of the integral equation methods and the differential equation methods is analyzed and compared comprehensively.
回顾了随机粗糙表面电磁散射特性计算方法的特点,分析对比了各类积分方程法和微分方程法的核心算法,着重讨论了矩阵分裂算法的计算效率,以及时域有限差分法求解色散粗糙面宽带散射特性的有关问题,指出了粗糙表面散射系数的计算和选择方法。
2.
Considering constraints of energy,time and line-of-sight angle,a near-range autonomous rendezvous glidescope orbit design method is studied based on the differential equation method.
考虑能量、时间、视线等约束条件,基于微分方程法研究了近程自主交会滑移轨道设计方法。
3) ordinaryz differential equation method
常微分方程方法
4) integro-differential equation method
积-微分方程方法
5) solve differential equation algorithm
解微分方程算法
1.
The solve differential equation algorithm is improved.
对解微分方程算法做了改进,通过数字仿真计算验证了改进后算法的优良估计性能,并且把它与递推最小二乘法、全周傅立叶算法作了比较,并根据各算法的估计性能特点,提出了一种具有反时限特性的距离保护算法的实现方案。
6) numerical method for ordinary differential equation
微分方程数值法
补充资料:Cauchy问题,常微分方程的数值方法
Cauchy问题,常微分方程的数值方法
audiyproHem, numerical methods for ordinary differential equations
Ca‘hy问皿,常橄分方程的数值方法【Ca“由y脚曲幻11,numeri因me山川s址。浦n.令山价跨n柱al equ劝舰s;Ko山“3a几a,a,叼“c月eltH石此MeTo口‘1 pe山e““,皿几,浦姗u此eu“oro职中钾Peuu.a几研oroyP韶ne..,1 Q以为y问题是求满足一个微分方程(或微分方程组)的一个函数(或几个函数),并在某固定点上取给定值的问题.设y(x)={yl(x),…,yn(x)}, f(x,y)=仃l(x,y),…,儿(x,少)}为分别在闭区间I=笼x:}x一al簇A}上和闭区域n二{(x,y):lx一al簇A,}{y一bl!簇B}内有定义并连续的向量函数,其中日.}}是有限维空间R”的范数.使用这个记号,我们可将一阶常微分方程的Q议为y问题写成: 少’(x)=f(x,少),少(x。)=少。,x。。I,少。Ell.(I) 适当选择新未知函数可将任一常微分方程组(任意阶的)的Q议hy问题简化成这种形式. 如果函数f(x,y)在n中连续,问题(l)有解.对解的唯一性的充分条件是05即od条件(05即od condi石on): 1 1 f(x,川一f(x,少2)}】(。(}}少:习:}}),(2)其中。(t)函数满足 c(工、00.。*0.。>0. 毛.气l)或者是更强的Li声chitZ条件(Li声Chilz condltion): I}f(x,少、)一f(x,yZ){}簇L! .y,一y:}!(3)成立,数L称为Li详Chi仪亨攀(Li声chitZconstant)·如果f(x,力对y连续可微,那么Li详d腼tZ常数的一个可 能值为 “一絮11常11·(4)在Li详chitZ常数(4)太大的各种情况下,用数值方法成功地解Q雀hy问题要求专门的数值技术,尽管从理论上讲这个问题是唯一可解的.特别是矩阵(方/日x)的本征值“很分散”时,即最大的本征值是最小的儿百倍甚至几千倍,就出现这种情况.这样的微分方程组称为刚俘枣邻s叮s”‘),对应的问题称为刚件。“力y卿覃(s叮CauChy probl~)·刚性系统的一个“源”是偏微分方程(例如通过直线方法)到常微分方程组的转换. 常微分方程的数值方法通常包括一个或数个公式,它们确定在离散点列凡(k=0,1,…)上要找的函数y(x)的关系.这些点的集合称为网格.一般的数值方法以及特别用于微分方程的数值方法,其基础是由L.Euler建立的.解0以为y问题的最简单的方法之一就是以他的名字命名的.这个方法如下.将问题(1)的解展成关于点xk的几尹or级数: (x一x。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条