说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> NMp蕴涵算子
1)  implication operator NMp
NMp蕴涵算子
2)  implication operator
蕴涵算子
1.
United forms of triple I method based on a sort of implication operators;
基于一类蕴涵算子的三I算法的统一形式
2.
Triple I methods based on parametric-implication operators;
基于含参量蕴涵算子的三I算法
3.
Research on implementation algorithm of fuzzy concept lattices based on different implication operator;
基于不同蕴涵算子的模糊概念格建格算法研究
3)  implication [英][,ɪmplɪ'keɪʃn]  [美]['ɪmplɪ'keʃən]
蕴涵算子
1.
We further study the inducing operators of a quasi-t-norm (or an implication) on a complete lattice once discussed in Reference [2],and prove that implication and the t-inducing operator of quasi-t-norm equals the original quasi-t-norm under a given condition and a given scope.
利用文献[2]中讨论完备格上蕴涵算子和拟t-模的诱导算子的思想方法,证明了蕴涵算子和拟t-模的2次T-诱导在一定条件下、一定范围内等于原拟t-模(或蕴涵算子),得到了两个不同诱导算子之间的关系及它们与L-关系方程解的联系。
2.
This paper discusses the sets of solutions of equations T(a,x)=b and I(a,x)=b, where L is a complete Brouwerian lattice, T is an infinitely V -distributive pseudo-t-norm on L, I is an infinitely A-distributive implication on L, and J=7(T).
讨论方程T(a,x)=b,I(a,x)=b的解集,其中L为完备Brouwer格,T为无穷V-分配伪t-模,I是无穷∧-分配蕴涵算子,且I=I(T)。
4)  implication operator Lp
蕴涵算子Lp
1.
The theory of sustaining degree of reverse triple I method and α-reverse triple I sustaining method for fuzzy reasoning based on implication operator Lp are studied.
研究了基于蕴涵算子Lp模糊推理的FMP反向三I支持算法及α-反向三I支持算法,给出了FMP模型的反向三I算法及α-反向三I算法的计算公式。
5)  L~* implication operator
L~*蕴涵算子
6)  Lukasiewicsz implication operator
Luk蕴涵算子
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条