2) unreduced symmetric tridiagonal matrix
不可约对称三对角矩阵
1.
According to isolation property an unreduced symmetric tridiagonal matrix with eigenvalues, we give an equivalence model with subsection strict monotonically.
依不可约对称三对角矩阵特征值的隔离性质,构造出具有分段严格单调性的等价模型,证明在每一单调区间内有且仅有一个根,并采用具有二次收敛的Newton迭代法求解。
3) irreducible tridiagonal matrix
不可约三对角矩阵
1.
In this paper,the inverse problems of constructing the irreducible tridiagonal matrixes,Jacobi matrixes and negative Jacobi matrixes with given three vector pairs are discussed.
文章讨论利用给定的三个向量对构造不可约三对角矩阵、Jacobi矩阵和负Jacobi矩阵的反问题。
4) irreducibly and weakly diagonally dominant matrix
不可约弱对角占优矩阵
1.
Based on the other earlier works as shown in reference and the characteristics of the elements of an irreducibly and weakly diagonally dominant matrix, the row elements of the complex matrix A are divided into three parts, then the module of the elements of each and every part are summed up to obtain the three values α_i, β_i, and γ_i.
根据不可约弱对角占优矩阵元素的特点,将复矩阵A的行元素划分为三个部分,并对每一部分元素的模求和得到三个值αi,βi,γi,通过比较由这三个值所构造出的hik和Hjk的大小给出了判断不可约矩阵A是广义严格对角占优矩阵的判别条件,并将其结果应用到非奇M 矩阵的判定上,推广了高益明等的主要结果
5) irreducible diagonally dominant matrix
不可约对角占优矩阵
6) irreducible and weakly diagonally dominant matrix
拟不可约对角占优阵
1.
The paper researches the irreducible and weakly diagonally dominant matrix,using the definition and features of irreducible and weakly diagonally dominant matrix and the simplest mathematics method,and then gets the several significant features of irreducible and weakly diagonally dominant matrix.
本文研究了拟不可约对角占优阵,利用不可约对角占优矩阵的定义与性质和较为简单的数学方法,得到了拟不可约对角占优阵的几个重要性质。
补充资料:三不可尽
【三不可尽】
﹝出宝积经﹞
[一、经法不可尽],谓如来所说经法,随其众生机乐不同,或广或略,虽一音宣演,而十方普被。故云经法不可尽。
[二、文字之义不可尽],谓如来所说经教妙义,横亘十方,竖彻三际,大无不周,细无所遗,是以小根浅智之人,不能窥其奥妙。故云文字之义不可尽。(三际者,过去、现在、未来也。)
[三、所宣训诲不可尽],谓如来所宣言教,训诲众生,或说大乘,或说小乘,随类现形,种种设化,利益无量。故云所宣训诲不可尽。
﹝出宝积经﹞
[一、经法不可尽],谓如来所说经法,随其众生机乐不同,或广或略,虽一音宣演,而十方普被。故云经法不可尽。
[二、文字之义不可尽],谓如来所说经教妙义,横亘十方,竖彻三际,大无不周,细无所遗,是以小根浅智之人,不能窥其奥妙。故云文字之义不可尽。(三际者,过去、现在、未来也。)
[三、所宣训诲不可尽],谓如来所宣言教,训诲众生,或说大乘,或说小乘,随类现形,种种设化,利益无量。故云所宣训诲不可尽。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条