1) (Non-)Monotone iterative
(非)单调迭代
2) monotone iteration
单调迭代
1.
First,we constructed a pair of appropriate upper and lower solutions,and then we proved the existence of the traveling wave solutions between two equilibria of the system by using the monotone iteration approach.
构造了一对合适的上下解,利用单调迭代方法证明了模型的两个平衡点之间行波解的存在性,进一步丰富了单调方法的内容。
2.
This paper is devoted to investigate a kind of lattice Nicholson s blowflies model with delay,and prove the existence of traveling wavefronts by upper-lower solution and monotone iteration technique.
考虑了一类具有时滞的格散N icholson苍蝇模型,并利用上下解和单调迭代技巧证明了此方程波前解的存在性。
3.
It is shown that the system exist monotone traveling wave solutions by using monotone iteration with upper and lower solutions provided wave speed satisfies some conditions.
研究一维离散的神经网络细胞模型,其输出函数是非线性的且其信息反馈具时滞,通过构造方程的上、下解,采用单调迭代准则得到当系统的波速c满足一定条件时存在单调行波解。
3) monotone iterative
单调迭代
1.
The method of upper and lower solutions and the monotone iterative technique are used.
研究一类四阶微分方程解的存在性,利用上下解及单调迭代的方法,得出这类四阶方程的最大解和最小解的存在。
2.
By using cone theorem and monotone iterative method, the mixed monotone condition in A(x,y)+Mx in Banach spaces is extended.
在实Banach空间中,利用锥理论和单调迭代方法,推广了A(x,y)+Mx中混合单调条件,用A(x,y)+Tx来代替以往的混合单调性。
3.
It obtains the existence results by using the monotone iterative method of lower and upper solutions and improves the results.
通过上下解的单调迭代方法,讨论了四阶常微分方程u(4)(t)=f(t,u,u′,u″,u),t∈[0,1],u(0)=u′(1)=u″(0)=u(1)=0,的边值问题,获得了解的存在性结果,推广了已有的结果。
4) monotone iterative technique
单调迭代
1.
In this paper,the monotone iterative technique for periodic boundary value problems with causal operators is developed.
用单调迭代方法研究一类带因果算子的周期边值问题。
2.
The existence of solutions and coupled minimal and maximal quasi-solutions of nonlinear Volterra impulsive integral equations in ordered Banach spaces is given by monotone iterative technique under G(t,s,x) and I_k(k=1,2,…,m) without monotone conditions.
利用单调迭代技巧在序Banach空间不包含任何单调性质的情况下,得到有关非线性Volterra型脉冲积分方程的解及最大最小拟解对的新的存在性定理。
3.
Under the compact type condition,a comparision theorem and monotone iterative techniques are founded on ,+∞) by using the theory of noncompactness measure and upper and lower solutions method,three existence results of global solutions are obtained for a initial value problem of ordinary differential equation in Banach spaces.
在紧型条件下,利用非紧性测度的性质和上下解方法,在[0,+∞)上建立了比较定理和单调迭代法,得到了一类常微分方程初值问题在[0,+∞)上整体解的3个存在性结果。
5) monotone iterative method
单调迭代
1.
The existence and uniqueness of solution and maximum principle about linear first order integrodifferential equation are given,then,using it,the monotone iterative method for PBVP of first order integrodifferential equations is discussed.
首先给出了一阶线性积分—微分方程BVP的解的存在唯一性结果及最值原理,然后应用上、下解和单调迭代方法证明了一阶积分—微分方程PBVP在下解和上解之间极解的存在
2.
The existence of solutions for multi-point boundary value problem with p-Laplacian operator is investigated by using monotone iterative method.
研究带p-Laplace算子的非线性微分方程的多点边值问题解的存在性,应用单调迭代,给出了这类边值问题存在解的充分条件,还给出了向正解靠近的单调集。
3.
A new maximum principle and monotone iterative method of lower and upper solutions are employed to establish existence result for the third-order boundary value problem-u″′(t)=f(t,u(t)),t∈,u(0)=u\'(0)=u(1)=0.
通过新的极大值原理及上下解的单调迭代方法讨论了三阶非线性边值问题{-u″′(t)=f(t,u(t)),t∈[0,1],u(0)=u\'(0)=u(1)=0。
6) monotone iterative technique
单调迭代法
1.
In this paper,the external problems of nonlinear singular systems are discussed by using monotone iterative technique and the method of upper and lower solutions.
应用单调迭代法和上下解的方法讨论了广义非线性系统的极限值问题 ,给出了解存在性的构造性证明 ,所构造的逼近序列是线性系统的解 ,因此较易实现数值计算 。
2.
This paper uses the monotone iterative technique to investigate the existence of the solutions of a class of boundary value problem for third-order differential equation.
用单调迭代法研究一类三阶微分方程边值问题解的存在性,不仅证明了该问题解的存在性,而且得到了其迭代格式。
3.
Aimed at the mathematic problem in the model of the pendulum oscillation,the paper introduces the study on the existence of odd-harmonic solutions to second order semi-linear differential equation which describes the model of the pendulum oscillation by using upper and lower solution method monotone iterative technique and the Schauder fixed point theorem respectively.
针对摆型振动模型中的数学问题,分别采用上下解方法、单调迭代法及Schauder不动点定理研究了摆型振动模型的二阶半线性微分方程奇调和解的存在性。
补充资料:迭代
迭代
iterate
迭代【ite口te;.什pa”11。] 重复应用某种数学运算的结果.这样,如果 y=f(x)三f,(x)是x的函数,则函数 fZ(x)=f[f;(x)」,…,f。(x)=f【f。一:(x)』顺次称为f(x)的二次,…,n次迭代(j记m记).例如,令f(x)=x‘,就得到 fZ(x)=(x“)一x·,, f。(x)=(x‘’一’)“=x““.指标”称为迭代的拳攀(Cxponent),而从f(‘)转移到fZ(x),f,(x),…也称为迭代(ite瑙如n).可以对某种函数类定义具有任意实指数甚至复指数的迭代.迭代用于通过迭代方法求解各种方程或方程组.详见序列逼近法(seq谬ntialappro劝na石on,兹心山记of).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条