说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 病态污染方程
1)  circle slip
病态污染方程
2)  atmospheric pollution equations
气污染方程
1.
In this paper,the atmospheric pollution equations is studied.
本文研究空气污染方程,导出其全离散化的混合元格式,证明该格式的全离散化混合元解的存在性和收敛性(误差估计)。
3)  ill-conditioned equation
病态方程
1.
However,in practical operations the balancing efficiency may be lowered due to the influence of ill-conditioned equations.
动平衡技术是用于消除转子不平衡故障的最为重要的手段,影响系数法则是动平衡技术中的一项重要方法,但是在实际操作中影响系数法可能受到病态方程的影响而降低平衡效率。
2.
Genetic algorithms(GA) is used for solving ill-conditioned equations in this paper, and its principle is introduced briefly.
对应用遗传算法解决病态方程问题进行了探讨。
4)  ill-posed equation
病态方程
1.
Genetic algorithm in solving ill-posed equations of 2D electromagnetic imaging;
遗传算法在二维电磁成像病态方程求解中的应用研究
2.
A method of ill-posed equation resolution for ambiguity resolution on-the-fly in network RTK reference station;
网络RTK参考站间模糊度动态解算中病态方程的一种解算方法
3.
First the spectral decomposition formula is proposed in this paper to solve ill-posed equation based on filter factor,and then a formula is educed to calculate filter factor by the criterion of minimizing the mean square error.
给出了基于滤波因子解算病态方程的谱分解公式,在均方误差最小的准则下,导出了滤波因子的计算公式,并用该公式模拟计算了CHAMP卫星(德国2000年发射的重力卫星)5天数据恢复的重力场模型系数。
5)  morbid equation
病态方程
1.
The characteristic of the morbid equation is discussed and an immediate solution is offered which take the unknown parameter into group.
介绍了差分干涉合成孔径雷达技术中的角反射器技术,讨论了其病态方程的特点,提出了一种将未知参数分类的直接解法,试验表明该方法是切实可行的。
6)  non-pollution ecological engineering
非污染生态工程
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条