1) variational inclusions for fuzzy mappings
模糊映象的变分包含组
1.
We also introduce and study a new system generalized nonlinear variational inclusions for fuzzy mappings in Hilbert space.
我们利用极大单调映象的预解算子技巧,建立了这类模糊映象的变分包含组与非线性集值映象的不动点问题之间的等价关系,再利用Nadler的不动点定理给出了这类变分包含组的解的存在性定理。
2) system of(A,η)-accretive mapping inclusions
(A,η)增生映象变分包含组
3) quasi-variational inequality with fuzzy mapping
模糊映象的拟变分不等式
1.
The author introduced and studied a new class of quasi-variational inequality with fuzzy mapping.
引入并研究了一类新的模糊映象的拟变分不等式,证明了这类拟变分不等式解的存在性,并构造了其迭代算法,最后证明了由此算法产生的迭代序列的收敛性,推广和改进了已知的相应结果。
4) Generalized fuzzy implicit quasivariational inclusion
Fuzzy映射的变分包含
5) generalized fuzzy variational inclusions
广义模糊变分包含
1.
The author introduced and studied a new class of generalized fuzzy variational inclusions with setvalued accretive mappings in Banach spaces,and proved the existence of solution for the generalized fuzzy variational inclusions with setvalued accretive mappings and construct a new stable perturbed Ishikawa iterative process with mixed errors.
引入并研究了Banach空间中新的一类具集值增生映象的广义模糊变分包含,证明了其解的存在性定理,并建立了一新的含混合误差的Ishikawa迭代序列,证明了其收敛性。
6) system of variational inclusion
变分包含组
1.
By the new resolvent operator technique,we proved the existence and uniqueness of solutions for this new system of variational inclusions in Banach space,meanwhile,we also established a new algorithm for approximating the solution of this system and d.
利用这一新的预解算子技巧,在Banach空间中证明了一类新的变分包含组的解的存在性和唯一性,同时也建立了一类新的算法来逼近这一变分包含组的解,并讨论了这一算法产生的迭代序列的收敛性。
补充资料:变分原理(复变函数论中的)
变分原理(复变函数论中的)
omplex function theory) variational principles (in
f日In}F(O(只,t),0)l}乙+:d乙=】nll,—}——,厂:’、一几t)〔.匕,日亡卜OC一“C’日当r,0时下*(:、,t)/:在B*的紧子集上一致地趋于0(k一1,2).该结果已被推广到二连通区域(13」).若加以进一步的限制,就能得到映射函数在B、(t)内关于表征所考虑区域边界形变的参数的展开式余项的估计式(在闭区域内一致)(【4」).份卜注】存在大量的变分原理,见【A3}第10章.亦可见变分参数法(variation一parametrie nlethod);肠”ner方法(幼wner Tnetl〕ed);内变分方法(internalvariations,服t】1‘对of). 还可见边界变分方法(boundary variations,me-tll‘xlof).M.schiffer对单叶函数的变分方法做出了重要的贡献,见〔A3」第10章.变分原理(复变函数论中的)Ivaria石0“目州址妙es(加e网Plex五叮‘6佣山印ry);。即“a双“OHH从e nP一”u“nHI 显示在平面区域的某些形变过程中那些支配映射函数变分的法则的断语. 主要的定性变分原理是ljxlelbf原理(Linde场fpnnciPle),可描述如下.设B*是z*平面上边界点多于一点的单连通区域,06B*,k=1,2;设二(;,B*)是对于B*的Green函数的阶层曲线,即圆盘王心川C!<1}到B*而使原点保持不变的单叶共形映上映射下圆周C(r)二{乙:{心}二;}的象,o<;<1.进而设函数f(:,)实现B,到B:的共形单射,f(0)‘O,在这些假定下有:l)对于L(:,B,)上任一点:?,存在位于阶层曲线L(:,BZ)上(这仅当f(B,)二BZ才有可能)或其内部的一点与之对应;及2){f’(0)1蕊}夕‘(0)},其中g(:,)满足g(0)二o是Bl到 BZ的单叶共形映射(等号仅当f(B1)=B:时成立).Lindebf原理系从Rien坦nn映射定理(见Rle-n.lln定理(Rierl飞幻In theorem))与Sdlwarz引理(Schwarz lemrr必)推出.相当精细的构造使之能够求出由被映射区域的给定形变所引起的映射函数的逐点偏差. 定量的基本变分原理系由M.A.几aBpeHTbeB(〔1」)获得(亦可见【2]),可叙述如下,设B:是具有解析边界的单连通区域,0任B!.假定存在给定区域族B,(r),0‘Bl(r),0(t蕊T,T>O,B;(0)二B,,具有JOrdan边界rl(t)={:一z,=0(之,t)},0(又续2兀,0(0,t)二Q(2二,r),其中Q(又,r)关于t在t二O可微且对又是一致的;设F(::,t),F(0,t)=0,F:.(0,t)>O,是把B,(t)单叶共形映射为BZ二{22:I:21
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条