说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> IC-富足半群
1)  IC-abundant semigroup
IC-富足半群
1.
In Section 2, We prove that an IC-abundant semigroup is .
在本章第二节,我们证明了:IC-富足半群S为型A-半群当且仅当它的自然偏序关于乘法是相容的。
2)  IC abundant semigroup
IC富足半群
1.
A finite semigroup is an IC abundant semigroup satisfying the left rgularity condition if and only if it is an orthodox superabundant semigroup whose idempotents form a left regular band.
一个有限半群是满足左正则性条件的IC富足半群当且仅当它是一个幂等元形成左正则带的纯整超富足半群,但满足左正则性条件的无限IC富足半群不都是幂等元形成左正则带的纯整超富足半群。
3)  abundant semigroup
富足半群
1.
Fuzzy Good Congruences on Abundant Semigroups;
富足半群上的F-好同余
2.
In this paper,first,we study fuzzy ideals on abundant semigroups by using Green*-relations L*,R* on semigroups defined by Fountain in and the natural partial order theory on abundant semigroups introduced by Lawson in [3],and give some properties of fuzzy ideals on such semigroups.
利用Fountain在文[1]中定义的半群S上的Green*-关系L*,R*及Lawson在文[3]中关于富足半群上的自然偏序理论研究了富足半群上的模糊理想,得到了富足半群上模糊理想的一些性质。
3.
In this paper,we study fuzzy ideals on abundant semigroups and get some properties of fuzzy ideals on such semigroups.
利用kuroki在文[9]中的结论,研究了富足半群上的模糊理想,得到了富足半群上模糊理想的一些性质,最后,通过举例,证明了富足半群在非正则的情形下,其上的模糊理想所具有的好性质。
4)  abundant semigroups
富足半群
1.
It is studied that so-called abundant semigroups with a right regular media idempotent.
研究所谓的具有右正则中间幂等元的富足半群,在给出右正则中间幂等元的概念之后,给出了具有右正则中间幂等元的富足半群的构造方法。
2.
In this paper,we discuss the properties of medial idempotents on abundant semigroups, study quasi-adequate semigroups with a normal medial idempotent and some extreme cases of such senngroups, and give the description of structure of every type of such semigroups, respectively.
从富足半群上中间幂等元的性质着手,研究具有正规中间幂等元的准充足半群的性质及若干极端情形,并分别给出各类半群的特征与构造。
5)  semiabundant semigroups
半富足半群
6)  quasi-abundant semigroup
拟富足半群
1.
The abundant semigroup is generalized to quasi-abundant semigroup,Green*-relations are generalized to Green-relations accordly.
把富足半群推广到拟富足半群,相应的Green*-关系推广到Green-关系。
补充资料:Clifford半群


Clifford半群
Clifford s emi - group

【补注】前文中、函数符号写在了变量后面,这在半群理沦中是共同的 涉及Chftbrd子群近代一l一作的J泛书日,可以在IAI]以及【AZ]中J.M、·akin和K.5.、.Nambooripad的文章中找到.邵UuP) 一个半群,它的每个元素皆为臀示(group demen‘),即处于某子群中.半群的元素是群元,当且仅当它是完全正则元(比如址eh侧mt).半群S是Ojffo记半群,当且仅当下列条件之一成立:l)对每个a6s有a任了Snsa,;2)5的每个单边理想I都是孤立的(isolated)(或半素的(semi一Prime)),即若x车I,则对任何自然数n有x”专1. 与逆半群(inversion semi一grouP)一道,Clilford半群是最重要类型的正则半群.它们的研究开始于AH.aifford的基本论文(【1』).每个Clifford半群有一个 (唯一)的群分解,这些群类恰是群类(见G比.1等价关系(Green equivalen沈relations)).这样的分解不一定是半群的带(band of semi一grouP);已经知道(见[3」)这件事成立的条件.Green关系笋和少在Clilrord半群上是一致的.每个完全单半群(。。mPletely-simPle semi一『oup)是Cliflbrd半群;Clifford半群是完全单的,当且仅当它是单半群(simple semi-grouP).每个Clifford半群S可分解成完全单半群的半格;这个分解是唯一的,它的分量正是多类,且对应的 商半格同构于S的主理想的半格.反之,可分解成完全单半群的半格的半群是Clifford半群. 对于Chflbrd半群S,下列条件等价:1)5是逆半 群;2)5的每个幂等元在中心中,即它与S的每个元素 都可交换;3)5的每个单边理想皆为双边理想;4) 在S上Green关系,和男一致;5)5是群的半格;6) S是群与具有零的群的次直积. 任意Clifford半群的完全单半群的半格分解决定 了它的“全局结构”.这个分解的分量中的元素的乘法 规则由Rees定理给定,见完全单半群.对Clifrord半 群的进一步的研究在很大程度上是要搞清它们的“精细 结构”,即决定不同分量中元素的乘法规则.当所有分 量是群时(即对于逆Chflbrd半群)利用所谓群的直谱的和(sUm of a directs讲c‘rum of脚u声)可以有一个构造性的描述.令{G。}。。,是一族互不相交的群,令A是一个半格(见.等元的半群(idempotents,semi-gro叩of)),对于每对元素以,口‘A恤)脚,都有一个同态叭.厂吼~G。,使得对每个:,叭,。是恒等自同构,又 当“)口勃时有叭.广钱,=叭,,.在并集S=U吓,G。上可以定义乘积一对任意。任民和beq,令小b=a毋、扩b甲,峥· 于是S成为一个逆aifford半群.反之每个逆Chflbrd半群都可以这样得到. 一般地,aifford半群的精细结构问题是极端复杂的.至今(1987)对它还没有满意的答案.在[51中 可以找到,用完全单半群,用它们的平移,半格,以及具 有特殊性质的映射包来描述Ojnb记半群的某些很复杂的构造正统的C帆brd半群的情形:_二取得很大进展,见正则半群(l馆lua,~一gro即)曰大样的半群称为手统群‘ord1Ogro哪)对于它们有一些相当笨重但是清楚的构造(见}21少听有提到的构造在某些方面推广r}l}中得到的逆a讲ord半群的构造猛;渭攀省纂戳黑沈艘嘿犷竺-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条