1) semibounded operators
下半有界算子
1.
The Friedrichs extension of semibounded operators is widely used in mathematical physics.
下半有界算子的Friedrichs延拓在数学物理中有着广泛的应用,它是数学物理中分析学的核心内容。
2) lower semi-bounded symmetric operators
下半有界的对称算子
3) semibounded operator
半有界算子
1.
The semibounded operators in Menger PN spaces;
Menger PN空间上的半有界算子(英文)
4) boundedness from below
下半有界性
5) C0 semigroups of bounded linear operators
有界线性算子C0半群
6) bounded operator
有界算子
1.
It is obtained that Iα is a bounded operator from Lp(Rn) into the Lorentz space Lq,∞(Rn).
证明了Iα是从Lp(Rn)到Lorentz空间Lq,∞(Rn)的有界算子,同时还证明了增长条件μ(S(x,r))≤Crn,x∈Rn,r>0是上述结论成立的必要条件。
2.
Some necessary and sufficient conditions are given for which M_(φ) is a bounded operator from B~α to B~β_0(respectively,from B~α_0 to B~β).
研究单位圆盘上的小B loch型空间B0α和B loch型空间Bβ之间的点乘算子M,在多种情况下给出了M是从Bα(B0α)空间到B0β(Bβ)空间的有界算子的充分必要条件。
3.
This note proves that for every f∈C(\;X), the continuous functionu,u(t)=∫ t 0S(t-s)f(s) d s, t∈is a strong (classical) solution of the second inhomogeneous zero initial value problem u″=Au+f, in \, iff A is a bounded operator in X.
本文证明了 ,对每个 f∈ C([0 ,T];X) ,连续函数u,u(t) =∫t0 S(t-s) f (s) ds,t∈ [0 ,T]是二阶非齐次 0初值问题 u″=Au+f 的强解的充要条件是 :A是空间 X中的有界算子 。
补充资料:半有界算子
半有界算子
semi-bounded operator
一个半有界算子S总有一个具有同样下界c的半有界自伴扩张A(Fri改lriehs定理(Friedrichsthe。比m)).特别地,S和它的扩张有同样的亏指数(见亏值(de-fective value)).半有界算子〔脚面一b民奴曰。碑rat份;n。刃orpaH“,eu-“。面onepaT0p] Hilbert空间H上的一个对称算子(syrnr阴tricOPe功tor)s,对它存在一个数c使得对S的定义域中的所有向量义, (Sx,x))c(x,x).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条