1) possibilistic set-valued mapping
可能性集值映射
2) Measurable set valued mapping
可测集值映射
1.
Egorov convergence theorem for measurable set valued mapping s sequence in separable and self reflexive Banach space was studied under various topological convergent meanings,almost everywhere convergent property of measurable set valued mapping sequence was discussed.
讨论了取值可分自反 Banach空间中可测集值映射序列的 Egorov型收敛定理 ,在几种不同拓扑收敛意义下 ,刻画了可测集值映射序列的几乎处处收敛 。
3) Measurable set-valued mapping
可测集值映射
1.
On the basis of the definition of set-valued fuzzy Choquet integrals, aiming at the general measurable set-valued mapping, some important properties with respect to this kind of set-valued fuzzy Choquet integrals further were studied , which will extend the applications of this kind of integral theory.
在集值模糊Choquet积分定义的基础上,针对一般可测集值映射,进一步研究这种集值模糊Choquet积分的一些重要性质,从而使这种积分的理论具有更广泛的应用。
4) measurable fuzzy set-valued mapping
可测Fuzzy集值映射
1.
This paper establishes the concept of measurable fuzzy set-valued mapping,elabroates convergences for thesequence of fuzzy set-valued mappings,and presents the integrals of measurable fuzzy set-valued mapping and itspropeties.
本文建立了可测Fuzzy集值映射,引入了Fuzzy集值映射的收敛性,并给出了可测Fuzzy集值映射的积分和它的性质。
5) set-valued linear mapping
集值线性映射
6) set-valued mapping
集值映射
1.
An intersection theorem for set-valued mapping and its application;
集值映射的一个交定理及其应用
2.
Approximation operators based on set-valued mappings in semi-partition approximation space;
基于集值映射的拟划分近似空间中近似算子
3.
On the continuously essential components of fixed points for the set-valued mapping;
集值映射不动点的连续本质连通区
补充资料:力学量的可能值和期待值
在量子力学中,力学量F用作用于波函数上的算符弲表示。在数学上,对于一个算符,满足
的函数 ui(r)称为弲的本征函数,式中Fi是与r无关的数,称为本征值。如果ui(r)描写微观粒子的状态,则它必须满足单值、连续和有限的标准条件。在这种限制之下,上式中的本征值可以取一系列分立值,或取一定范围内的连续数值。
在测量力学量F时,观察到的只能是它的本征值。若一个力学量的本征值具有分立谱,我们说这个力学量是量子化的。
量子力学中假定力学量的全部本征函数组成一个完全系;这意思是说:描写体系的任一状态的波函数ψ都可以用力学量的本征函数ui展开:
在ψ和ui都是归一化的情况下,上式中的展开系数сi具有如下的物理意义:在ψ态中测量力学量时,得到结果为Fi的几率是|сi|2。
因此,若微观粒子的定态波函数是某力学量算符的本征函数ui(r),则在这一状态中,力学量F取确定值Fi。
在ψ态中对力学量进行多次测量,把所得结果加以平均,就得出力学量在ψ态中的期待值,以〈F〉表示:
上式称为力学量的期待值公式。如果ψ不是归一化的,那么期待值公式应写为
的函数 ui(r)称为弲的本征函数,式中Fi是与r无关的数,称为本征值。如果ui(r)描写微观粒子的状态,则它必须满足单值、连续和有限的标准条件。在这种限制之下,上式中的本征值可以取一系列分立值,或取一定范围内的连续数值。
在测量力学量F时,观察到的只能是它的本征值。若一个力学量的本征值具有分立谱,我们说这个力学量是量子化的。
量子力学中假定力学量的全部本征函数组成一个完全系;这意思是说:描写体系的任一状态的波函数ψ都可以用力学量的本征函数ui展开:
在ψ和ui都是归一化的情况下,上式中的展开系数сi具有如下的物理意义:在ψ态中测量力学量时,得到结果为Fi的几率是|сi|2。
因此,若微观粒子的定态波函数是某力学量算符的本征函数ui(r),则在这一状态中,力学量F取确定值Fi。
在ψ态中对力学量进行多次测量,把所得结果加以平均,就得出力学量在ψ态中的期待值,以〈F〉表示:
上式称为力学量的期待值公式。如果ψ不是归一化的,那么期待值公式应写为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条