1) Mathematic model of displacement measurement
位移测量数学模型
2) mathematical model of measurement
测量数学模型
1.
The components of standard uncertainty are determined by using the mathematical model of measurement.
按照规范 ,JJF10 59- 1999,对二等标准铂电阻温度计在锌凝固点及水沸点检定的不确定度进行了评定 ,通过建立测量数学模型确定各标准不确定度分量 ,并按不确定度传播公式给出固定点间各温度点的扩展不确定度及包含因子。
3) Displacement detection type
位移测量型
4) digital displacement measurement instrument
数字位移测量仪
6) mathematical madels/delimited survying
数学模型/划拨测量
补充资料:位移测量仪表
测量刚体平移或转动时的线位移或角位移的机械量测量仪表,用于测量机械位移、机械零部件的几何参数(尺寸、表面形状等)以及在加工过程中连续测量钢板、纸和橡胶等的几何尺寸。位移测量仪表由位移传感器、测量电路和指示器等部分组成。位移传感器按输出信号的类型可分为模拟式位移传感器和数字式位移传感器两类。
模拟式位移传感器 将被测位移变换为模拟量信号输出的测量元件。通常由变换元件、导向构件和测量力弹簧等部分构成,有时传感器还包括测量电路的一部分。模拟式位移传感器按变换元件工作原理又可分为电阻式、电容式、电感式、涡流式、光电式和霍尔式等。图为电感式位移传感器的结构示意图,变换元件主要是由线圈和磁芯构成的差动电感线圈。测量位移时,传感器的测量端与被测对象接触,量端感受位移S,并通过测杆使磁芯作相应的移动,因而使线圈的电感量发生变化,而发出信号。测量电路将传感器输出信号转换和放大后,由指示器指示被测位移值。磁芯的运动方向由测杆与外壳的滑动配合来限制。测量力弹簧给出使量端与被测物在测量时保持接触所需的测量力。模拟式位移传感器结构较简单、价格较低,因此使用范围很广。测量上限值为130微米~625毫米,测量误差为0.01~2%。
数字式位移传感器 将被测位移转换为数码信号输出的测量元件,又称为编码器。编码器按编码方式分为绝对编码器和增量编码器两类。
① 绝对编码器:它对应每一位移量都能产生唯一的数字编码,因此在指示某一的位移时,编码器不必要存贮原先的位移。编码的分辨力决定于编码器输出数字的位数。编码器的结构与所利用的物理现象(电、光或磁)的变化有关。例如电刷编码器一般是一个盘子,上面有若干条同心的轨道,称为数道。数道上导电面积和一些绝缘面积构成代码,每条数道对应输出数字的一位数。当盘子随被测物转动时,电刷以电接触的方式读出每个数道上的导电区和绝缘区,产生数字编码。磁性编码器和光学编码器的结构与电刷编码器相似,只是位移的编码输出由磁或光束来表示。绝对编码器的特点是误差不会累积,而且在位移快速变化时不必考虑电路的响应问题。
② 增量编码器:它在测量物体位移时,能发生电流或电压的跃变。输出信号的每次跃变所对应的位移增量决定于编码器的分辨力。为了测量位移,必须利用存贮器计数跃变的次数。属于这一类传感器的有感应同步器、磁栅和光栅。增量编码器的特点是零点可以任意设定,分辨力为1微米。
数字式位移传感器测量精确度高、测量范围宽,适用于对大位移的测量,在精密定位系统和精密加工技术中得到广泛应用。
参考书目
桜井、白江編著:《变换検出器》,コロナ社,東京,1973。
模拟式位移传感器 将被测位移变换为模拟量信号输出的测量元件。通常由变换元件、导向构件和测量力弹簧等部分构成,有时传感器还包括测量电路的一部分。模拟式位移传感器按变换元件工作原理又可分为电阻式、电容式、电感式、涡流式、光电式和霍尔式等。图为电感式位移传感器的结构示意图,变换元件主要是由线圈和磁芯构成的差动电感线圈。测量位移时,传感器的测量端与被测对象接触,量端感受位移S,并通过测杆使磁芯作相应的移动,因而使线圈的电感量发生变化,而发出信号。测量电路将传感器输出信号转换和放大后,由指示器指示被测位移值。磁芯的运动方向由测杆与外壳的滑动配合来限制。测量力弹簧给出使量端与被测物在测量时保持接触所需的测量力。模拟式位移传感器结构较简单、价格较低,因此使用范围很广。测量上限值为130微米~625毫米,测量误差为0.01~2%。
数字式位移传感器 将被测位移转换为数码信号输出的测量元件,又称为编码器。编码器按编码方式分为绝对编码器和增量编码器两类。
① 绝对编码器:它对应每一位移量都能产生唯一的数字编码,因此在指示某一的位移时,编码器不必要存贮原先的位移。编码的分辨力决定于编码器输出数字的位数。编码器的结构与所利用的物理现象(电、光或磁)的变化有关。例如电刷编码器一般是一个盘子,上面有若干条同心的轨道,称为数道。数道上导电面积和一些绝缘面积构成代码,每条数道对应输出数字的一位数。当盘子随被测物转动时,电刷以电接触的方式读出每个数道上的导电区和绝缘区,产生数字编码。磁性编码器和光学编码器的结构与电刷编码器相似,只是位移的编码输出由磁或光束来表示。绝对编码器的特点是误差不会累积,而且在位移快速变化时不必考虑电路的响应问题。
② 增量编码器:它在测量物体位移时,能发生电流或电压的跃变。输出信号的每次跃变所对应的位移增量决定于编码器的分辨力。为了测量位移,必须利用存贮器计数跃变的次数。属于这一类传感器的有感应同步器、磁栅和光栅。增量编码器的特点是零点可以任意设定,分辨力为1微米。
数字式位移传感器测量精确度高、测量范围宽,适用于对大位移的测量,在精密定位系统和精密加工技术中得到广泛应用。
参考书目
桜井、白江編著:《变换検出器》,コロナ社,東京,1973。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条