1) nonlinear second-order boundary condition
非线性二阶边界条件
1.
The global decay rate of solution for a class of wave equation with nonlinear second-order boundary conditions is further discussed by virtue of a comparison inequality and the energy perturbation method.
利用一个比较不等式和能量扰动法,对一类具有非线性二阶边界条件的波动方程整体解的衰减性做进一步研究,证明了解的衰减率和外力f(x,t)之间的关系。
2) nonlinear boundary condition
非线性边界条件
1.
Existence of global attractor for reaction-diffusion equations under nonlinear boundary conditions;
非线性边界条件下反应-扩散方程组全局吸引子的存在性
2.
By employing Galerkin approach,the authors have proved the existence and uniqueness of the global solutions to the equation hereinabove under nonlinear boundary condition,and proved the continuous dependence of the soluti.
考虑材料的粘性效应,建立了一类轴向载荷作用下的更一般的粘弹性梁方程,并利用G a lerk in方法,证明了该方程在非线性边界条件下整体解的存在性,解对初值的连续依赖性,整体解的唯一性。
3.
In this paper, we use the theory of differential inequalities to study the sigular perturbation for a class of higher order nonlinear equations with nonlinear boundary conditions.
文章利用微分不等式的方法,研究了一类具有非线性边界条件的高阶非线性方程的奇摄动。
3) nonlinear boundary conditions
非线性边界条件
1.
Existence and uniqueness of nonnegative classical solution for a parabolic system with nonlinear boundary conditions;
一个具有非线性边界条件的抛物系统非负古典解的存在唯一性(英文)
2.
Global existence and blow-up problem for nonlinear parabolic equations with nonlinear boundary conditions;
具非线性边界条件的非线性抛物型方程组整体解和爆破问题
3.
The existence of the global solution for the system under some certain initial and nonlinear boundary conditions is proved use Faedo-Galerkin method.
同时考虑材料的粘性效应及非线性外阻尼,建立了一类弯曲与扭转联合作用下的有部分不同的方程组,研究了弯曲与扭转联合作用下的非线性梁方程组的初边值问题,并运用Faedo-Galerkin方法,证明了在非线性边界条件下方程组整体解的存在性。
4) nonlinear boundary condi-tions
全非线性边界条件
5) Linear non-homogeneous boundary conditions
非齐次线性边界条件
6) nonlinear oblique derivative boundary conditions
非线性斜导数边界条件
1.
∞)solutions to the obstacle problems for second order fully nonlinear elliptic equations with the nonlinear oblique derivative boundary conditions, under the natural structure conditions.
在自然结构条件下证明了具有非线性斜导数边界条件的二阶完全非线性椭圆方程障碍问题W~2,∞解的存在性、唯一性和正则性。
补充资料:非线性最小二乘拟合
分子式:
CAS号:
性质:用最小二乘法拟合非线性方程。有些变量之间的非线性模型,通过变量变换可以化为线性模型,此称为外在线性。而有些变量之间的非线性模型,通过变量变换不能化为线性模型,通称为内在非线性。对于非线性模型y=f(ξ,θ)+ε,其残差平方和。S(θ)是θ的函数,当模型关于θ是非线性的,正规方程关于θ也是非线性的。基于使残差平方和s(θ)达到极小的原理求出θ的估计值,拟合非线性回归方程。
CAS号:
性质:用最小二乘法拟合非线性方程。有些变量之间的非线性模型,通过变量变换可以化为线性模型,此称为外在线性。而有些变量之间的非线性模型,通过变量变换不能化为线性模型,通称为内在非线性。对于非线性模型y=f(ξ,θ)+ε,其残差平方和。S(θ)是θ的函数,当模型关于θ是非线性的,正规方程关于θ也是非线性的。基于使残差平方和s(θ)达到极小的原理求出θ的估计值,拟合非线性回归方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条