1) general linear boundary
广义线性边界
2) general supported boundary
广义简支边界
1.
In this paper, the general supported boundary condition is applied to solve the bending of rectangular plates supported at any point on the four straight edges under a concentrated load.
基于薄板弯曲问题的广义简支边界条件 ,通过将集中载荷作用下四直边上任意点支承矩形板的弯曲问题分解为 6个基本的薄板弯曲问题 ,应用叠加法首次得到了该问题的解析解 。
3) generalized boundary recursive method
广义边界递归法
4) generalized boundary element methods
广义边界元法
1.
Sparse preconditioners are first considered for standard boundary element methods and then developed for the generalized boundary element methods (extended dual reciprocity methods).
然后阐述广义边界元法及其推广。
5) Generalized boundary conditions
广义边界条件
1.
The Spectrum of the Transport Operator With Generalized Boundary Conditions in a Slab;
板模型中一类具广义边界条件的迁移算子的谱(英文)
2.
For Euler-Bernoulli beam with generalized boundary conditions, a nonlinear dynamic model with large deformation and the corresponding linearized equation are established in relative description by Hamilton form of the principle of least action.
对于广义边界条件Euler-Bernoulli梁,采用相对描述方式建立了可描述梁整体运动和相对变形的几何非线性及其线性化动力学模型,应用线性变换得到了该类梁的线性经典动力学方程,得到了广义边界条件下梁的横向振动代数特征方程、特征函数及特征值的退化表达式。
6) generalized Navier boundary condition
广义Navier边界条件
1.
Based on Navier-Stokes equations and the generalized Navier boundary condition,we established a model with dynamic effect for two-phase immiscible flow in a capillary tube.
给出了毛细管中基于Navier-Stokes方程、加入了广义Navier边界条件以及动态毛管压强的不相溶二相流的流动模型。
补充资料:Martin边界(Марков过程论中的)
Martin边界(Марков过程论中的)
artin boundary in the theory of Markov processes
加加找加边界(Map劝.过程论中的)【扮肠到血.旅.b乃尸勿血d此.叹ofM自rkov Processes;MaP布“a印aIIH”aB Te0P“MaP劝BcICHx nPO期ecc0BI MaP翔B过程(Ma。刀v Proo改舀)的状态空间或其在某一紧空间中的映象的边界,它是用类似于Martin概形(见【1」)构造的. Martin构造的概率解释首先由J .L .L助。b(见L41)提出,他讨论了离散MaPKoB链的情形. 设P(t,x,B)是在一可分、局部紧空间E上给定的齐次腼pKOB过程X=(x:,C,Fr,p二)的转移函数(仇‘朋ition function),其中t)0,x‘E,B任分,而男是E中的B心化1集族.对“)O,x‘E,y日E定义的,且对固定的,为(分火少)可测的函数g。(x,y))O称为G】优r函数(G获先n士加ction),如果对每一B任少, 口二 丁g·(x,,)。(d,)三丁。一‘p(。,x,。)、:, B0其中m是妙上的测度,为了避免G就n函数定义中的多义性,还可以再要求对任意具有紧支撑的连续函数f(x),函数 g,‘,,一丁,(x)。二(x,一m(、x) E是A连续的(意指存在一个关于t左连续的函数F(t,田),使得 p,{F(t,·)笋久(x,(·川三o,x“E,r>o).固定一个,中的测度下,假定Gn笼n函数存在,定义Mart运核(Martin kernel)为 。:,、_g。(x,y) r‘劝二一. q气y)其中 。(,)一丁。二(x,,):(、x) E(此处必须引人某些限制以保证q(力的正性和A连续性).如果下是集中在某点的单位测度,而X是在某个区域的首出时中断的Wi。省过程(W记几汀详以刀昭),则衅(x)的定义归结为文献[IJ中类似的形式.在宽广的条件下,存在一个紧集才(“Martin紧统”),一个在,上的测度嵘(dx)(x)0,y‘司及一个映射i:E一才,创门满足条件:a)i(E)在才中稠;b)当f遍历E中具紧支撑的连续函数时,函数 鳄(f)一了f(:)叼(‘二)分离才中的点且在才上连续;c)若y〔E,则测度鲜,,(dx)与测度鳄(x)m(dx)相同·此时,集合i(E)在才中的边界称为M田石n边界(Mart访加训山叼)或流出边界(exjt一boUnda仃)(在研究过分测度的分解时,又出现了对偶边界,即流人边界.见【3],f4」). 为了描述才的性质,引入在Doob意义下的h过程是方便的:对每个过分函数(~i记丘川山。n)h,联系一个(尸,‘罗“)上的转移函数 ,人(。,x,。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条