说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 完全Mendelsohn设计
1)  perfect Mendelsohn design
完全Mendelsohn设计
1.
A perfect Mendelsohn design, denoted by (v, 4,1)-PMD is a pair (X, A), where X is a v-set(of points), and A is a collection of cyclically ordered 4-subset of X (called blocks), such that every ordered pair of points of X appears t-apart in exactly one block of A for any t, where 1≤ t≤3.
我们称(X,A)为一个(v,4,1)-完全Mendelsohn设计,简记为(v,4,1)-PMD,其中X是v个点的集合,A是X的循环有序4-子集(称之为区组)构成的集合,使得每一对X的有序点对的t-间隔在且仅在A中的一个区组中出现,1≤t≤3。
2.
A perfect Mendelsohn design, denoted by (v,4,1)-PMD is a pair (X,A), where X is a v-set(of points), and A is a collection of cyclically ordered 4-subset of X(called blocks), such that every ordered pair of points of X appears i-apart in exactly one block of A for any t, where 1≤ t ≤ 3.
我们称(X,(?))为一个(v,4,1)完全Mendelsohn设计,简记为(v,4,1)-PMD,其中X是v个点的集合,(?)是X的循环有序4-子集(称之为区组)构成的集合,使得每一对X的有序点对的t-间隔在且仅在(?)中的一个区组中出现,1≤t≤3。
2)  Mendelsohn design
Mendelsohn设计
1.
A perfect Mendelsohn design,denoted by(v,k,λ)-PMD is a pair(X,A),where X is a v-set(of points),and A is a collection of cyclically ordered k-subsets of X(called blocks),such that every ordered pair of points of X appears t-apart in exactly λ blocks of A for any t,where 1≤ t ≤k-1.
一个完全Mendelsohn设计,记为(v,k,λ)-PMD,是二元组(X,A),使得X中每个有序点对恰好t间隔地出现在λ个区组中。
2.
A Mendelsohn design MD(v,k,λ) is said to be self-converse,denoted by SCMD(v,k,λ)=(X,B,f),if there is an isomorphic mapping f from(X,B) to(X,B~(-1)),where B~(-1)={B~(-1);B∈B} and B~(-1)=<x_k,x_(k-1),…,x_2,x_1> for B=<x_1,x_2,…,x_(k-1),x_k>.
一个Mendelsohn设计MD(v,k,λ)称为是自反的,记为SCMD=(v,k,λ)=(X,B,f),如果存在从(X,B)到(X,B-1)的同构映射f,B-1={B-1;B∈B},其中若B=则B-1=
3)  mandatory Mendelsohn design
强制Mendelsohn设计
1.
A {k_1,k_2}-SCMD(v) will be called self-converse mandatory Mendelsohn design with block sizes k_1 and k_2 such that there is at least one block size k_1 and k_2,denoted by {k_1,k_2}-SCMMD(v).
一个{k1,k2}-SCMD(v)称为是自反强制Mendelsohn设计,记作{k1,k2}-SCMMD(v),若{k1,k2}-SCMD(v)中区组长度至少有一个k1和一个k2。
4)  Mendelsohn packing design
Mendelsohn填充设计
5)  incomplete Mendelsohn triple system
不完全Mendelsohn三元系
6)  complete design
完全设计
补充资料:随机完全区组设计
分子式:
CAS号:

性质:一种试验设计方法。根据局部控制的原则将整个试验划分为若干区组,在同一区组内每个因素的所有水平都出现,且各个实验按随机顺序进行。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条