1) single-leaved groups
单叶类群
2) compound-leaved groups
复叶类群
3) monocotyledons
单子叶类
4) pinnately compound leaf group
羽状叶类群
5) univalent-like operator
类单叶算子
1.
Under the certain condition,the closure of(u+k)-orbit of the univalent-like operator is characterized and the result that the univalent operator is in the closure of(u+k)-orbit of the univalent-like operator is proved.
在一定条件下,刻画了类单叶算子的(u+k)轨道闭包,并证明了单叶算子包含在类单叶算子的(u+k)轨道闭包中。
6) Haplogroup
单倍型类群
1.
Objective: To amplify the mtDNA gene pool of Guang-Dong Han Populations which is a ancient population in Guang-Dong Province, the research the mtDNAs of the Dong-Guan Han Population and analysis the mtDNA haplogroups have been done.
目的:通过研究广东东莞汉族的线粒体DNA(mtDNA)突变位点,分析其单倍型类群,充实广东汉族线粒体DNA基因库。
补充资料:除子类群
除子类群
divisor dass group
(加沙1 ofan记已公))‘ 在一定意义上说,除子类群度量了A的元家在不可约因子分解时偏离唯一性的程度.例如,唯一分解环具有平凡的除子类群.设中:A~B是Kn习1环的同态,那么在一定的附加条件下(例如)舀西是刁的整一一的或平坦的扩张时),存在着除子类群的一个典范同态扩:C(A)~C(B).如果B是A对于某个乘法系S的局部化(见交换代数的局部化(loc浏函由n in a corn,叮以扭石记al罗bra)),则扩是映上的,并且扩的核被与S相交的除子素理想所生成(永田定理(两罗扭theo-~”.如果B是A上的多项式环,则典范同态矿是一一对应(这是〔饭u铝定理,即域上的多项式环是唯一分解环的推广).对于更一般的情形,当B是某个A模M的对称N议川服r代数时,只要所有的对称幕S(’)(娜都是自反的,则典范同态扩是一一对应.如果B是A上的形式幂级数环,则价’是单射(甚至是左可逆的),但一般讲来不是一一对应. 由可逆理想生成的C(A)的子群同构于A的乃口川群(乃c出月grouP)氏(A),并且玫(A)和C(A)的函子性质是相容的.于是,如果B是A的忠实平坦扩张且斌:氏(A)~氏(B)是单射,则扩:c(A)~c(B)也是单射.特别地,如果局部环A的完全化诬是唯一分解环,则A也是因子分解环(森光定理(Morit枪幻n叹n)). 设A是正规N忱ther环.群氏(A)与C(A)相同,当且仅当A在局部上是唯一分解环(丘‘协d目rillg),也就是说,所有的局部环A,是唯一分解环(例如,当A是正则环时).更精确地,如果F“{peSPeC(A):人是因子分解环},则C(A)‘恤一氏(功,这里U取遍51袱:(A)的包含F的开子概形系.这使得人们可以定义正规概形的除子类群(【5J)—认叫1除子类群(见除子(divisor)). 人们研究除子类群首先是对代数数环进行的.关于这些群的有限性的最早结果是E.K切rnn坦r得到的.除子类群的性质与数论问题,例如Rn“吐定理,有着密切的联系.在汇11中给出了某些代数数环的除子类群的阶的表. 除子类群理论的全面推广是由W.Kn山得到的;P.Samuel研究了除子类群的函子特征,并且提出了计算它们的某些方法(例如,下降法).研究除子类群的另外一些途径基于与乃。川群的类比,同时也应用上同调与代数几何的方法. 每个Abel群都可以作为除子类群出现.【补注】见类域论(c地位ld tlk幻ry),以了解代数整数环的除子类群与域的Abel扩张之间的联系.除子类群冲南嘴d比绍孚.平;期侧戈,月二3叩加r一ynnal 盆n口环(Kn习Inng)A的除子理想(山诚扣耐i出川)群D(A)关于由主理想组成的子群F卿的商群.除子类群是交换群,通常记为C(A).群C(A)由A中高度为1的素理想所在的类生成(见理想的高度
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条