1) Degenerate parabolic equation and inequality
退化抛物方程和不等式
2) degenerate parabolic inequality
退化抛物型不等方程
3) degenerate parabolic system
退化抛物方程组
1.
Global existence and blow-up of solutions to quasilinear degenerate parabolic system;
拟线性退化抛物方程组解的整体存在和有限爆破
2.
This paper deals with a degenerate parabolic system with nonlocal sources.
本文讨论一类具有非局部源退化抛物方程组。
3.
this paper investigates the uniquenes S Of solutions with compact support of a boundary value problem which comes from t He study of asymptotic behavior of blow up solution of the degenerate parabolic System.
研究一个来源于研究退化抛物方程组的渐近性而产生的常微分方程组 。
4) degenerate parabolic equations
退化抛物方程
1.
We define the renormlized entropy solutions of quasilinear anisotropic degenerate parabolic equations with explicit (t,x)-dependence:where a(u, t, x) = (a_(ij)(u, t,x)) = σ(u, t, x)σ(u, t, x)~T is nonnegtive definit.
针对带时间空间扩散参数的拟线性各向异性退化抛物方程: a_tu+div f(u,t,x)=div(a(u,t,x)▽u)+F(u,t,x) u(0,x)=u_0(x)∈L~1(R~d)其中a(u,t,x)=(a_(ij)(u,t,x))=σ(u,t,x)σ(u,t,x)~T是非负有限的,我们定义了其熵解和重整化熵解,并且证明了柯西问题 a_tu=div(a(u)▽u),u(0,x)=u_0(x)∈L~1(R~d)的重整化熵解的存在性和唯一性。
5) degenerate parabolic equation
退化抛物方程
1.
Existence and blow-up for a degenerate parabolic equation with nonlinear boundary flux;
一类带有非线性边界流的退化抛物方程的整体存在性及爆破(英文)
2.
A HOPF lemma of the degenerate parabolic equations on the Heisenberg group;
HEISENBERG群上退化抛物方程的HOPF型引理
3.
Certain continuity of viscosity solutions of the Cauchy problem for a degenerate parabolic equations not in divergence form;
一类非散度型退化抛物方程Cauchy问题粘性解的某种连续性
6) Degenerate parabolic equation
退化抛物型方程
1.
The Dirichlet initial-boundary conditions of the classⅠnonlinear degenerate parabolic equation are considered in this paper.
考虑一类非线性退化抛物型方程初边值问题,分别用正则化方法和上下解方法在一定条件下证得方程的古典解的存在性及解的整体存在性。
2.
This paper deals with a quasilinear doubly degenerate parabolic equation with measures as data: (|x|u)l- div(|x|v |Du|p-2Du) =μ, where μ∈M(Q) = [Cc(Q)](set of Radon -measures), Q = (0, T)×Ω,Ω is an open bounded subset of RN, 0∈Ω; v≥0, v≥0, P≥1.
研究在Radon测度下一类双重退化抛物型方程(|x|νu)t-div(|X|v|Du|P-2Du)=μ。
补充资料:退化抛物型方程
退化抛物型方程
degenerate parabolic equation
退化抛物型方程【血留搜犯加声口加血闰皿垃翔;肠甲0岌-几e二oe naPa6o朋,ee切e yPa朋e一翻e】 偏微分方程 F(r,x,Du)=0,其中函数F(t,x,q)有下述性质:对于某个偶自然数P,对于所有实的亡,多项式 艺主生上丛卫业月一(i:、二 刁q:的所有的根又有非正实部,并且,对于某个着护O,t,x和Du,对于某个根又有Re又=0,或者对于某个t,x和加,最高次护/P的系数为零.这里t是自变量,它通常被解释为时间;x是n维向量(x,,…,x,):u(t,x)是未知函数;“是多重指标(“。,::,“‘,仪。);加是分量为 日l,I,, 刀区材=一:,二二气二-二,--一二尸- 一日r“,日x户‘…刁x矛·的向t,其中p“。+,各“‘(“,J“I一“。+“1+…+“。;q是分量为q二的向量;亡是n维向量(亡:,…,氛);(i幼“’=(i七1):’…(i七。)’‘.亦见退化偏微分方程(山generate part运1由晚砚t训闪业山n)及其参考文献.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条