说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 强全色数
1)  strong total chromatic number
强全色数
2)  vertex strong total chromatic number
点强全色数
1.
The vertex strong total chromatic number of general graphs K(n,m);
广义图K(n,m)的点强全色数
2.
A proper k-total coloring σ of graph G(V,E) is called a k-vertex strong total coloring of G(V,E) if and only if for v∈V(G),the elements in N[v] are colored with different colors,where N[v]={u|vu∈E(G)}∪{v};and χvsT(G)=min{k|there is a k-vertex strong total coloring of G} is called the vertex strong total chromatic number of G.
并且vχsT(G)=min{k|存在G的一个k-点强全着色}称为G(V,E)的点强全色数
3.
A proper k-total coloring σ of graph G(V,E)is called a k-vertex strong total coloring of G(V,E)if and only if for ν∈V(G),the elements in N[ν]are colored with different colors,where N[ν]={u|νu∈E(G)}∪{ν};and χ~(νs)_(_T)(G)=min{k|there is a k-vertex strong total coloring of G}is called the vertex strong total chromatic number of G.
并且χνsT(G)=min{k|存在G的一个k-点强全着色}称为G(V,E)的点强全色数
3)  adjacent-vertex strongly-distinguishing total coloring
邻点强可区别全色数
4)  adjacent strong vertex-distinguishing total coloring
邻点可区别的强全色数
1.
Suppose f is a proper total coloring of G which use k colors,for uv∈E(G), it s satisfied C(u)≠C(v),where C(u)={f(u)}∪{f(v)|uv∈E(G)}∪{f(uv)|uv∈E(G)}, then f is called a k adjacent strong vertex-distinguishing total coloring of graph G(k-ASVDTC for short)and χ ast (G)=min{k|k-ASVDTC of G} is called the chromatic number of adjacent strong vertex-disting.
设 f为用 k色时 G的正常全染色法 ,对 uv∈ E(G) ,满足 C(u)≠ C(v) ,其中C(u) ={ f(u) }∪ { f(v) |uv∈ E(G) }∪ { f(uv) |uv∈ E(G) } ,则称 f 为 G的 k邻点可区别的强全染色法 ,简记作 k- ASVDTC,且称 χast(G) =min{ k|k- ASVDTC of G}为 G的邻点可区别的强全色数
5)  strong totol coloring
强全着色
6)  strong edge-chromatic number
强边色数
补充资料:椐椐强强
1.相随貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条