1) adjacent strong edge chromatic number
邻强边色数
1.
The edge chromatic number and adjacent strong edge chromatic number of graph F_m W_n;
图F_m W_n的边色数和邻强边色数
2.
In this paper,we proved that the total chromatic number and adjacent strong edge chromatic number of Cartesian product graph of cycle Cm and cycle C5n.
证明了圈Cm与圈C5n的笛卡尔积图的全色数和邻强边色数都为5。
3.
The adjacent strong edge chromatic number of join graph of star and path is obtained.
为了解决图的邻强边染色问题中一个图的色数算法问题,通过特别的方法来记图的染色过程,同时分4种情况讨论了星和路联图的邻强边染色问题,指出在染色过程中给定的4种情况的染色方法各不相同,并通过对图的着色得到了星和路联图的邻强边色数。
2) equitable adjacent strong edge chromatic number
均匀邻强边色数
1.
χ~(′)_(eas)(G)=min{k|k-EASEC of G} be called the equitable adjacent strong edge chromatic number of G.
并称χe′as(G)=min{k k-EASEC of G}为G的均匀邻强边色数。
3) adjacent strong edge chromatic number of adjacent vertex-distinguish graph
邻点可区别邻强边色数
4) adjacent strong edge coloring
邻强边染色
1.
On the adjacent strong edge coloring of P_m×P_n and P_m×C_n;
P_m×P_n和P_m×C_n的邻强边染色
2.
On the adjacent strong edge coloring of several class of complete 4-partite graphs;
几类完全4-部图的邻强边染色
3.
A proper k-edge coloring of graph G(V,E) is said to be a k-adjacent strong edge coloring(k-ASEC) of graph G(V,E) if every uv∈E(G) satisfy f[u]≠f[v],where f[u]={f(uw)|uw∈E(G)},and x′_(as)(G)=min{k|k-ASEC} is called the adjacent strong edge chromatic number.
对图G(V,E),一正常k-边染色f称为图G(V,E)的k-邻强边染色,当且仅当对任意uv∈E(G),有f[u]≠f[v],其中f[u]={f(uw)|uw∈E(G)},并称x′as(G)=min{k|存在G的一k-ASEC}为G的邻强边色数。
5) adjacent strong edge coloring
邻强边着色
1.
What s adjacent strong edge coloring is meaning that if a proper kedge coloring σ is satisfied with c(u)≠c(v), where c(u)={σ(uv)|uv∈E(G)}, then σ is called kadjacent strong edge coloring of G.
则其邻强边染色是指对于图G(V,E),若σ:E→{1,2,…,n}为其一正常着色, u,v∈V,当uv∈E(G)时,若c(u)≠c(v),其中c(u)={σ(uv)|uv∈E(G)},则称σ为G的邻强边着色。
补充资料:色数儿
1.即色子。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条