1) Width estimation of function classes
函数类的宽度估计
2) The kernel estimation of density function
密度函数的核估计
3) density function estimation
密度函数估计
1.
Wavelet density function estimations based monitoring approach to a class nonlinear systems controlled with the feedback linearizing strategy is suggested.
针对一类基于反馈线性化补偿的非线性控制系统 ,提出一种基于小波密度函数估计的过程监视及故障诊断策略 。
4) kernel density function estimation
核密度函数估计
6) velocity-estimated function
速度估计函数
1.
In the strategy,monitoring node imposes the position messages of the neighbor hop node to calculate the velocity-estimated function and orientation-estimated function.
监测节点利用邻跳节点的位置信息计算运动物体的速度估计函数和方位角估计函数,在方位角估计函数范围内的节点根据速度估计函数计算运动物体到达的估计时间,并在此后的一段时间内增加节点占空比以提高感知概率。
补充资料:函数逼近,函数类的极值问题
函数逼近,函数类的极值问题
ions, extremal problems in function dasses approximation of ftinc-
】f,r,(r’)一f(r,(r‘’)}《M】r’一r“}“(r’,,“。I一1,!])的f任Cr!一1,l]组成的函数类,则对于n一1次代数多项式子空间贝了在!一1,l]上所作的最佳一致逼近,下列关系式成立: 悠二E‘MH。,”‘”)‘一粤,‘6) ,、_一二,二,,,,、~刀、M,二、。,,r,、忽”厂‘““‘M附rH“,贝:’‘一誉{’·‘万一‘’‘““‘,‘7, r=l,2,…,将这些结果与周期情形下的相应结果进行比较是有所裨益的.当,=1时,(6),(7)的右端分别等于M凡和M人r+1.如果放弃对最佳逼近多项式的要求,那么就可以获得较强的结果,这些结果实质上改善了在!一1,l]端点处的逼近并保持了整个区间上的最佳渐近特征.例如,对任何f6MH‘,存在代数多项式序列Pn以t)任灾矛,使得当n~的时,下列关系式在t6!一1,l]上一致成立:、f(!)一。。,‘)、·:{{;杯}“二‘一,!- =E(MHa,哭聋)。【(l一tZ)a·‘2+o(l)1.对M评百,(r=1,2,…)也有类似的结果(见【川).关于(最佳及插值型)样条逼近给定在区间上函数类的问题,若干精确及渐近精确的结果(主要是对于低阶样条)已公诸于世(见1151). 就(积分度量下的)单边逼近而言,关于上述函数类用多项式和样条进行最佳逼近的误差估计也已得到了一系列精确的结果(见【14]).在推导这些结果的过程中,实质上利用了最佳逼近在锥约束下的对偶关系. 对给定的函数类叨,寻求其(固定维数的)最佳逼近工具将导致确定所谓的宽度(widih)问题,亦即确定(参考(l),(3)) 心(,之,幻=运fE(叭,贝,)x, 贝即 d沁(叭,X)==运f者(叭,叽、),, 田阳(其中下确界取自X的所有N维子空间灾N(及其平移)),以及确定实现这些下确界的(最佳)极子空间问题.心与d万的上界可由E(叨,灾)x和g(叭,叭)x分别给出,对于具体的子空间贝,来说,E(绷,灾)x和扩(绷,哭N)x是已知的.宽度问题中的主要困难是获取下确界.在某些场合下,可借助于拓扑中的Borsuk对映定理丈见18』)而得到这些下确界.在用(。一1阶三角多项式)子空间,荔一,或(关于结点人司。亏数为1的。阶样条)子空间s皿解决函数类M吼及周期函数类wrH“的最佳逼近问题时,已知的上确界E(叭,巩、)x几乎在所有的情况下同时也就是这些函数类的心值.此外,对周期函数类还有姚。一1=姚。.特别有(见[7],【8],【1 51,【16」)dZ,l(附妥,C)=dZ。(W蕊,C)二dZ。一(W下.L一)= =dZ。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条