2) parallel unit mean curvature vector
标准平均曲率向量
1.
In this paper we discuss the C-totally real pseudo-umbilical submanifolds with parallel unit mean curvature vector of a Sasakian space form.
文章讨论了Sasakian空间形式中标准平均曲率向量平行的C-全实伪脐子流形,得到了紧致的C-全实伪脐子流形的一个刚性结果。
3) scalar curvature
标量曲率
1.
In this paper,through studying Yamabe flow,we prove that for any complete noncompact locally conformally flat manifolds,if the Ricci curvature is nonnegative,the scalar curvature is bounded and the mean value of the scalar curvature satisfies some decaying condition,then the manifold is flat.
通过Yamabe流的研究,证明了对任一完备非紧局部共形平埋的黎曼流形,若Ricci曲率非负,标量曲率有界且它的平均值满足一定衰竭条件,则此流形是平坦的。
2.
Furthermore,given a compact and boundaryless n-dimensional differentiable manifold M,we show that any pointwise C-projective change from a Berwald space (M,) to a Riemann space (M,F) is trivial if the trace of the Ricci curvature Ric of with respect to F is less or equal to the scalar curvature of F.
给定一个紧致无边的n维可微流形M,证明了:对于一个从M上的Berwald度量到Riemann度量的C射影变换,如果Berwald度量的Ricci曲率关于Riemann度量的迹不超过Riemann度量的标量曲率,则该射影变换是平凡的。
4) scalar curvature
数量曲率
1.
A pinching theorem about scalar curvature;
关于数量曲率的一个拼挤定理
2.
By using an inequality relation between a scalar curvature and the length of the second fundamental form,it is proved that sectional curvatures of a submanifold must be nonnegative (or positive).
利用数量曲率与第二基本形式长度之间的一个不等式关系,证明了其子流形的截面曲率一定非负(或者为正),并将此应用到紧致子流形上,得到一些结果。
5) Curvature quantity
曲率数量
6) number scale standard
数量标准
补充资料:德国国家标准(见德国标准化学会、德国标准体系)
德国国家标准(见德国标准化学会、德国标准体系)
National Standards of Germany: see Deutsches Institut für Normung, DIN;standards system of Germany
Oeguo Guol心日icozhun德国国家标准(Natio.吐S加Ln山切曲of Gen”旧ny)见德国标准化学会;德国标准体系。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条