说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> D-P类方程
1)  D-P type equation
D-P类方程
1.
In this paper, we study the existence of the global solution, the Blow-up and the traveling wave solution for the generalized D-P type equation and the generalized hyperlastic-rod wave equation.
本文主要研究D-P类方程和广义超弹性杆波动方程解的局部存在性,整体存在性,Blow-up,以及方程的行波解的存在性等。
2)  induable function
广义E-P-D方程
3)  p-Laplacian-Like equation
类p-Laplacian方程
1.
In this paper, we consider the eigenvalue problem for the p-Laplacian-like equation -div(a(|Du|p)|Du| p-2Du) = λf(x,u), χ∈Ω, u = 0,χ∈(?)Ω, where Ω(?) Rn (n ≥ 2) is a bounded smooth domain.
本文考虑类p-Laplacian方程-div(a(|Du|~p)|Du|~(p-2)Du)=λf(x,u),x∈Ω,u=0,x∈Ω的特征值问题,其中ΩR~n(n≥2)是有界光滑区域。
4)  P-R equation
P-R方程
5)  p-Laplacian equation
P-Laplace方程
1.
In this paper we consider the global existence of the solutions of the p-Laplacian equations with particular coefficient.
利用Hardy不等式及Soblev嵌入定理讨论了具特殊系数的P-Laplace方程解的整体存在性,得到对初值u_0∈W~(1,p)(Ω)当λ<λ_(N,p),对任意的1λ_(N,p),1
2.
In this paper we consider the Cauchy problem of the p-Laplacian equations with absorption.
本文讨论了带吸收项的P-Laplace方程解当p→∞时的渐近性质。
3.
This paper deals with the existence of a solution for a fourth-order p-Laplacian equation boundary value problem: ,and the different case for the degree of power with respect to the variables x and y of f(t,x,y).
研究一类四阶p-Laplace方程的边值问题:。
6)  p-Laplace equation
p-Laplace方程
1.
Existence of solutions for p-Laplace equations subject to the boundary value problem;
p-Laplace方程边值问题解的存在性
2.
In this paper,the existence of solutions is considered for one dimensional p-Laplace equation(φ_p(u′(t)))′= f(t,u(t),u′(t)),t∈(0,1)subject to Neumann boundary con- dition.
主要讨论一维p-Laplace方程(φ_p(u′(t)))′=f(t,u(t),u′(t)),t∈(0,1)在Neumann边值条件u′(0)=0,u′(1)=0下,对应的边值问题解的存在性。
3.
The authors discuss the existence of positive solution for a p-Laplace equation with singular weight by using Sobolev-Hardy inequality and the Mountain Pass Lemma.
利用Sobolev-Hardy不等式和山路引理,讨论了一类包含奇性权p-Laplace方程在具有光滑边界开集上正解的存在性。
补充资料:第二类拉格朗日方程
      见拉格朗日方程。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条