说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> p-Laplacian方程
1)  p-Laplacian equation
p-Laplacian方程
1.
Existence of positive solutions for the p-Laplacian equation m-point boundary value problems with derivative;
一类含导数的p-Laplacian方程m-点边值问题的正解存在性
2.
Solvability of a certain p-Laplacian equation;
一类p-Laplacian方程的可解性
3.
Eigenvalue problem of p-Laplacian equations in weighted Sobolev space
加权p-Laplacian方程的特征值问题
2)  p-Laplacian equations
p-Laplacian方程
1.
Some existence and multiplicity results are obtained for solutions of p-Laplacian equations involving Hardy-Sobolev critical exponents and superlinear nonlinearity by the variational methods and analysis techniques.
通过变分方法和分析技巧,得到了一类具有Hardy-Sobolev临界指数和超线性的非线性项p-Laplacian方程解的存在与多重性结果。
2.
The existence of periodic solutions for p-Laplacian equations with some deviating arguments is studied by using coincidence degree theory.
研究了一类具多偏差变元的n-维p-Laplacian方程周期解的存在性,利用迭合度理论得到了存在周期解的新条件。
3)  p-Laplacian-Like equation
类p-Laplacian方程
1.
In this paper, we consider the eigenvalue problem for the p-Laplacian-like equation -div(a(|Du|p)|Du| p-2Du) = λf(x,u), χ∈Ω, u = 0,χ∈(?)Ω, where Ω(?) Rn (n ≥ 2) is a bounded smooth domain.
本文考虑类p-Laplacian方程-div(a(|Du|~p)|Du|~(p-2)Du)=λf(x,u),x∈Ω,u=0,x∈Ω的特征值问题,其中ΩR~n(n≥2)是有界光滑区域。
4)  p(x)-Laplacian equation
p(x)-Laplacian方程
1.
In this paper, we study the existence of solutions for p(x)-Laplacian equations withcritical exponents.
对p(x)-Laplacian方程的研究来源于非线性弹性力学、电子流变流体学模型,并获得了许多结果。
5)  p-Laplacian system
p-Laplacian方程组
1.
The paper investigates a p-Laplacian system with Dirichlet boundary conditions,and proves the existence,uniqueness and non-existence of positive solutions by the sub-super solutions method and weak comparison principle.
文章考察一类带有Dirichlet边界条件的p-Laplacian方程组的正解的存在唯一性和不存在性。
6)  one-dimensional p-Laplacian
一维p-Laplacian方程
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条