3) singular integral operator
奇异积分算子
1.
Weighted norm inequalities for singular integral operators with Dini-type condition;
具有Dini核奇异积分算子的几个加权赋范不等式
2.
On the norm of a Hilbert s type singular integral operator with a parameterized integral kernel and its applications;
一个带参数积分核的Hilbert型奇异积分算子的范数刻画及应用
3.
Some Problems on Commutators Generated by Singular Integral Operators and Oscillatory Integral Operators;
粗糙核奇异积分算子及振荡积分算子的交换子的有界性问题
4) singular integral operators
奇异积分算子
1.
Estimation and application of kernel of singular integral operators with Dini-type condition;
具有Dini型条件的奇异积分算子的核的估计及应用
2.
This paper proves the boundedness of certain principal- value singular integral operators on weighted BMOαover locally compact Vilenkin Groups.
讨论了局部紧 Vilenkin群上一类奇异积分算子的权 BMOα空间的有界
3.
In this paper, we have proved that L2 boundedness of commutators of BMO and Calderon-Zygmund singular integral operators with weak kernel, defined by [B,T]f = BTf-T(Bf) when B ∈ BMO, where T satisfies the following conditions: T(b1) ∈ BMO, T*(b2) ∈ BMO, b2Tb1 ∈ WBP for some accretive functions b1,b2.
本文证明了BMO与弱核条件下Calderón-Zygmund奇异积分算子的交换子 [B,T]f=BTf-T(Bf)的L2有界性,这里B ∈BMO,T对增生的b1,b2,满足 T(b1)∈BMO,T*(b2)∈BMO,b2Tb1∈WBP。
5) strongly singular integral operator
强奇异积分算子
1.
In this paper, we consider endpoint estimates for commutators of strongly singular integral operators on Hardy space, and establish the boundedness from the space H1(Rn) to weak L1(Rn) and from a subspace of H1(Rn) to L1(Rn) , respectively.
本文考虑强奇异积分算子的交换子在Hardy型空间上的端点估计,建立了这类交换子从H1(Rn)到弱 L1(Rn)上的有界性及H1(Rn)的某个子空间到 L1(Rn)上的有界性结果。
2.
In this paper,a variant sharp function estimate is established for commutators of strongly singular integral operators.
本文建立了强奇异积分算子一阶交换子的一个变形sharp函数估计。
6) Миракъян singular integral operators
Миракъян奇异积分算子
1.
As an example, Миракъян singular integral operators are analysed and studied, and a general conclusion has been reached.
利用该定理建立了变形的Миракъян奇异积分算子的收敛性定理 ,得到了具有一般性的结
补充资料:积分算子的核
积分算子的核
kemd of an integral operator
积分算子的核汇ken曰of胡加魄间。详翔tor;朋Po一TerP幼‘HO阳onePaIOPa」 二元函数K(x,力,通过下列等式定义了一个积分算子(Inte脚1 opemtor)A: *(,)一A。,(x)l一JK(x,,),(x)d。(x),其中x遍及一个测度空间(~眠sP毗)(X,d川,而中属于在X上定义的某一函数空间. r.几.月劝e班即B撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条