2) Singular covariance matrix
奇异协方差矩阵
1.
The optimal portfolio selection of singular covariance matrix;
奇异协方差矩阵的最优投资组合选择
3) Singular covariance matrix
奇异协方差阵
1.
The solution to efficient set and some problems in the case of singular covariance matrix are discussed by means of an arbitrage model.
借助一个“套利组合模型”对奇异协方差阵下有效证券组合的求解及其有关问题进行了分析论证 ,得出的结论是 ,协方差矩阵奇异时 ,证券市场有可能存在“套利组合”。
6) singular equation
奇异方程
1.
In this paper,we study mainly positive periodic solution to singular equations.
在这篇文章中,我们主要研究奇异方程的正周期解问题。
2.
The present paper deals with the existence of positive solutions of the singular equation (|u′| p-2 u′)′+f(t,u)=0 satisfying the nonlinear boundary value conditions h(u (o) u′ o(0))=0,u(1)=0 by means of the technique of upper and lower soluitons .
本文利用上、下解技巧讨论了奇异方程(|u′|p-2u′)′+f(t,u)=0满足非线性边值条件h(u(o),u′(o)=0u(1)=0的正解存在
补充资料:协方差阵
协方差阵
covanance matrix
协方差阵【cm.dan份ma州x;曰.例...叱幽旧M.,阅a] 若干个随机变量,成对取其协方差,所构成的矩阵.更确切地,k维向量X=(x,,…,习的协方差阵为方阵艺=〔【(火二〔X)(浑‘E幻T],这里〔X=(E戈,…,〔勒丁是均值向量.协方差阵的分量是 aij=日(不一E戈Xxj一Exjll=cov(Xi,xj), i,j=l,…,k,而当i=j时,它与0戈(“var(茂》相同(即戈的方差位犷主对角线_!一).协方差阵是一个对称半正定阵.若协方差阵为正定的则X的分布为非退化的;否则为退化的.对随机向量血言,协方差阵的作用,正如随机变量的方差.如果随机变量X,,…,戈的方差都是1.则X二(刃、,一、戈)的协方差阵与其相关阵(mrrelation matrix)相同. 样本厂”,…,砂、的样本协方差阵,由方差和协方差的估计量构成二 S一汁:户l‘X(用’一见‘X‘”一习了,这里X‘m,如二l,.。)是独立同分布的k维随机向量,而-了是厂,j、…,户’的算术平均.如果丫‘、,二,厂”,的分布是具协方差阵艺的多维且态分布,则S(n一l)/。是艺的最大似然估计量;在这一场合,矩阵(n一飞)S各元的联合分布称为Wi劝斌分布(Wishart distrlbuti(,n).它是多元统计分析中的基本分布之一,借助于它可检验有关协方差阵艺的假设.A.Bfl阳xopoB撰陈希孺译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条